org.scalatest

Suite

trait Suite extends Assertions with AbstractSuite with Serializable

A suite of tests. A Suite instance encapsulates a conceptual suite (i.e., a collection) of tests.

This trait provides an interface composed of "lifecycle methods" that allow suites of tests to be run. Its implementation enables a default way of writing and executing tests. Subtraits and subclasses can override Suite's lifecycle methods to enable other ways of writing and executing tests.

Prior to ScalaTest 2.0.M4, trait Suite served two purposes: 1) It served as the base class of ScalaTest's family of style traits, and 2) It was itself a style trait in which tests are methods. Although it will continue to serve its first purpose, it has been deprecated as a style trait. Pre-existing code that used Suite as a style trait to define tests as methods will continue to work during the deprecation period, but will generate a deprecation warning. Please change all such uses of Suite to use trait Spec instead.

Nested suites

A Suite can refer to a collection of other Suites, which are called nested Suites. Those nested Suites can in turn have their own nested Suites, and so on. Large test suites can be organized, therefore, as a tree of nested Suites. This trait's run method, in addition to invoking its test methods, invokes run on each of its nested Suites.

A List of a Suite's nested Suites can be obtained by invoking its nestedSuites method. If you wish to create a Suite that serves as a container for nested Suites, whether or not it has test methods of its own, simply override nestedSuites to return a List of the nested Suites. Because this is a common use case, ScalaTest provides a convenience Suites class, which takes a variable number of nested Suites as constructor parameters. Here's an example:

package org.scalatest.examples.suite.nested

import org.scalatest._
class ASuite extends FunSuite { test("A should have ASCII value 41 hex") { assert('A' === 0x41) } test("a should have ASCII value 61 hex") { assert('a' === 0x61) } } class BSuite extends FunSuite { test("B should have ASCII value 42 hex") { assert('B' === 0x42) } test("b should have ASCII value 62 hex") { assert('b' === 0x62) } } class CSuite extends FunSuite { test("C should have ASCII value 43 hex") { assert('C' === 0x43) } test("c should have ASCII value 63 hex") { assert('c' === 0x63) } }
class ASCIISuite extends Suites( new ASuite, new BSuite, new CSuite )

If you now run ASCIISuite:

scala> new ASCIISuite execute

You will see reports printed to the standard output that indicate the nested suites—ASuite, BSuite, and CSuite—were run:

ASCIISuite:
ASuite:
- A should have ASCII value 41 hex
- a should have ASCII value 61 hex
BSuite:
- B should have ASCII value 42 hex
- b should have ASCII value 62 hex
CSuite:
- C should have ASCII value 43 hex
- c should have ASCII value 63 hex

Note that Runner can discover Suites automatically, so you need not necessarily define nested Suites explicitly. See the documentation for Runner for more information.

The config map

In some cases you may need to pass information to a suite of tests. For example, perhaps a suite of tests needs to grab information from a file, and you want to be able to specify a different filename during different runs. You can accomplish this in ScalaTest by passing the filename in a config map of key-value pairs, which is passed to run as a Map[String, Any]. The values in the config map are called "config objects," because they can be used to configure suites, reporters, and tests.

You can specify a string config object is via the ScalaTest Runner, either via the command line or ScalaTest's ant task. (See the documentation for Runner for information on how to specify config objects on the command line.) The config map is passed to run, runNestedSuites, runTests, and runTest, so one way to access it in your suite is to override one of those methods. If you need to use the config map inside your tests, you can access it from the NoArgTest passed to withFixture, or the OneArgTest passed to withFixture in the traits in the org.scalatest.fixture package. (See the documentation for fixture.Suite for instructions on how to access the config map in tests.)

Executing suites in parallel

The run method takes as one of its parameters an optional Distributor. If a Distributor is passed in, this trait's implementation of run puts its nested Suites into the distributor rather than executing them directly. The caller of run is responsible for ensuring that some entity runs the Suites placed into the distributor. The -P command line parameter to Runner, for example, will cause Suites put into the Distributor to be run in parallel via a pool of threads. If you wish to execute the tests themselves in parallel, mix in ParallelTestExecution.

Treatment of java.lang.Errors

The Javadoc documentation for java.lang.Error states:

An Error is a subclass of Throwable that indicates serious problems that a reasonable application should not try to catch. Most such errors are abnormal conditions.

Because Errors are used to denote serious errors, trait Suite and its subtypes in the ScalaTest API do not always treat a test that completes abruptly with an Error as a test failure, but sometimes as an indication that serious problems have arisen that should cause the run to abort. For example, if a test completes abruptly with an OutOfMemoryError, it will not be reported as a test failure, but will instead cause the run to abort. Because not everyone uses Errors only to represent serious problems, however, ScalaTest only behaves this way for the following exception types (and their subclasses):

The previous list includes all Errors that exist as part of Java 1.5 API, excluding java.lang.AssertionError. ScalaTest does treat a thrown AssertionError as an indication of a test failure. In addition, any other Error that is not an instance of a type mentioned in the previous list will be caught by the Suite traits in the ScalaTest API and reported as the cause of a test failure.

Although trait Suite and all its subtypes in the ScalaTest API consistently behave this way with regard to Errors, this behavior is not required by the contract of Suite. Subclasses and subtraits that you define, for example, may treat all Errors as test failures, or indicate errors in some other way that has nothing to do with exceptions.

Extensibility

Trait Suite provides default implementations of its methods that should be sufficient for most applications, but many methods can be overridden when desired. Here's a summary of the methods that are intended to be overridden:

For example, this trait's implementation of testNames performs reflection to discover methods starting with test, and places these in a Set whose iterator returns the names in alphabetical order. If you wish to run tests in a different order in a particular Suite, perhaps because a test named testAlpha can only succeed after a test named testBeta has run, you can override testNames so that it returns a Set whose iterator returns testBeta before testAlpha. (This trait's implementation of run will invoke tests in the order they come out of the testNames Set iterator.)

Alternatively, you may not like starting your test methods with test, and prefer using @Test annotations in the style of Java's JUnit 4 or TestNG. If so, you can override testNames to discover tests using either of these two APIs @Test annotations, or one of your own invention. (This is in fact how org.scalatest.junit.JUnitSuite and org.scalatest.testng.TestNGSuite work.)

Moreover, test in ScalaTest does not necessarily mean test method. A test can be anything that can be given a name, that starts and either succeeds or fails, and can be ignored. In org.scalatest.FunSuite, for example, tests are represented as function values. This approach might look foreign to JUnit users, but may feel more natural to programmers with a functional programming background. To facilitate this style of writing tests, FunSuite overrides testNames, runTest, and run such that you can define tests as function values.

You can also model existing JUnit 3, JUnit 4, or TestNG tests as suites of tests, thereby incorporating tests written in Java into a ScalaTest suite. The "wrapper" classes in packages org.scalatest.junit and org.scalatest.testng exist to make this easy. No matter what legacy tests you may have, it is likely you can create or use an existing Suite subclass that allows you to model those tests as ScalaTest suites and tests and incorporate them into a ScalaTest suite. You can then write new tests in Scala and continue supporting older tests in Java.

Self Type
Suite
Linear Supertypes
Serializable, AbstractSuite, Assertions, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Hide All
  2. Show all
  1. Suite
  2. Serializable
  3. AbstractSuite
  4. Assertions
  5. AnyRef
  6. Any
Visibility
  1. Public
  2. All

Type Members

  1. class Equalizer extends AnyRef

    Class used via an implicit conversion to enable any two objects to be compared with === in assertions in tests.

  2. trait NoArgTest extends () ⇒ Unit with TestData

    A test function taking no arguments, which also provides a test name and config map.

Value Members

  1. def != (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  2. def != (arg0: Any): Boolean

    Attributes
    final
    Definition Classes
    Any
  3. def ## (): Int

    Attributes
    final
    Definition Classes
    AnyRef → Any
  4. def == (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  5. def == (arg0: Any): Boolean

    Attributes
    final
    Definition Classes
    Any
  6. def asInstanceOf [T0] : T0

    Attributes
    final
    Definition Classes
    Any
  7. def assert (o: Option[String]): Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the String value of the Some included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b)
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    Definition Classes
    Assertions
  8. def assert (o: Option[String], clue: Any): Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the String value of the Some, as well as the String obtained by invoking toString on the specified clue, included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b, "extra info reported if assertion fails")
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
  9. def assert (condition: Boolean, clue: Any): Unit

    Assert that a boolean condition, described in String message, is true.

    Assert that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with the String obtained by invoking toString on the specified clue as the exception's detail message.

    condition

    the boolean condition to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
  10. def assert (condition: Boolean): Unit

    Assert that a boolean condition is true.

    Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

    condition

    the boolean condition to assert

    Definition Classes
    Assertions
  11. def assume (o: Option[String]): Unit

    Assume that an Option[String] is None.

    Assume that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestCanceledException with the String value of the Some included in the TestCanceledException's detail message.

    This form of assume is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b)
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    Definition Classes
    Assertions
  12. def assume (o: Option[String], clue: Any): Unit

    Assume that an Option[String] is None.

    Assume that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestCanceledException with the String value of the Some, as well as the String obtained by invoking toString on the specified clue, included in the TestCanceledException's detail message.

    This form of assume is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assume(a === b, "extra info reported if assertion fails")
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
  13. def assume (condition: Boolean, clue: Any): Unit

    Assume that a boolean condition, described in String message, is true.

    Assume that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException with the String obtained by invoking toString on the specified clue as the exception's detail message.

    condition

    the boolean condition to assume

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
  14. def assume (condition: Boolean): Unit

    Assume that a boolean condition is true.

    Assume that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException.

    condition

    the boolean condition to assert

    Definition Classes
    Assertions
  15. def cancel (cause: Throwable): Nothing

    Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed.

    Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestCanceledException will return cause.toString.

    cause

    a Throwable that indicates the cause of the cancellation.

    Definition Classes
    Assertions
  16. def cancel (message: String, cause: Throwable): Nothing

    Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
  17. def cancel (message: String): Nothing

    Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

    Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

    message

    A message describing the cancellation.

    Definition Classes
    Assertions
  18. def cancel (): Nothing

    Throws TestCanceledException to indicate a test was canceled.

    Throws TestCanceledException to indicate a test was canceled.

    Definition Classes
    Assertions
  19. def clone (): AnyRef

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  20. implicit def convertToEqualizer (left: Any): Equalizer

    Implicit conversion from Any to Equalizer, used to enable assertions with === comparisons.

    Implicit conversion from Any to Equalizer, used to enable assertions with === comparisons.

    For more information on this mechanism, see the documentation for Equalizer.

    Because trait Suite mixes in Assertions, this implicit conversion will always be available by default in ScalaTest Suites. This is the only implicit conversion that is in scope by default in every ScalaTest Suite. Other implicit conversions offered by ScalaTest, such as those that support the matchers DSL or invokePrivate, must be explicitly invited into your test code, either by mixing in a trait or importing the members of its companion object. The reason ScalaTest requires you to invite in implicit conversions (with the exception of the implicit conversion for === operator) is because if one of ScalaTest's implicit conversions clashes with an implicit conversion used in the code you are trying to test, your program won't compile. Thus there is a chance that if you are ever trying to use a library or test some code that also offers an implicit conversion involving a === operator, you could run into the problem of a compiler error due to an ambiguous implicit conversion. If that happens, you can turn off the implicit conversion offered by this convertToEqualizer method simply by overriding the method in your Suite subclass, but not marking it as implicit:

    // In your Suite subclass
    override def convertToEqualizer(left: Any) = new Equalizer(left)
    

    left

    the object whose type to convert to Equalizer.

    Attributes
    implicit
    Definition Classes
    Assertions
  21. def createCatchReporter (reporter: Reporter): WrapperCatchReporter

    Attributes
    protected[scalatest]
  22. def eq (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  23. def equals (arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  24. def execute : Unit

    Executes this Suite, printing results to the standard output.

    Executes this Suite, printing results to the standard output.

    This method, which simply invokes the other overloaded form of execute with default parameter values, is intended for use only as a mini-DSL for the Scala interpreter. It allows you to execute a Suite in the interpreter with a minimum of finger typing:

    scala> new SetSpec execute
    An empty Set
    - should have size 0
    - should produce NoSuchElementException when head is invoked !!! IGNORED !!!
    

    If you do ever want to invoke execute outside the Scala interpreter, it is best style to invoke it with empty parens to indicate it has a side effect, like this:

    // Use empty parens form in regular code (outside the Scala interpreter)
    (new ExampleSuite).execute()
    

    Attributes
    final
  25. def execute (testName: String = null, configMap: Map[String, Any] = Map(), color: Boolean = true, durations: Boolean = false, shortstacks: Boolean = false, fullstacks: Boolean = false, stats: Boolean = false): Unit

    Executes one or more tests in this Suite, printing results to the standard output.

    Executes one or more tests in this Suite, printing results to the standard output.

    This method invokes run on itself, passing in values that can be configured via the parameters to this method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter. Here's a summary of this method's parameters and how you can use them:

    The testName parameter

    If you leave testName at its default value (of null), this method will pass None to the testName parameter of run, and as a result all the tests in this suite will be executed. If you specify a testName, this method will pass Some(testName) to run, and only that test will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:

    scala> new ExampleSuite execute
    

    (The above syntax actually invokes the overloaded parameterless form of execute, which calls this form with its default parameter values.) To run just the test named "my favorite test" in a suite from the Scala interpreter, you would write:

    scala> new ExampleSuite execute ("my favorite test")
    

    Or:

    scala> new ExampleSuite execute (testName = "my favorite test")
    

    The configMap parameter

    If you provide a value for the configMap parameter, this method will pass it to run. If not, the default value of an empty Map will be passed. For more information on how to use a config map to configure your test suites, see the config map section in the main documentation for this trait. Here's an example in which you configure a run with the name of an input file:

    scala> new ExampleSuite execute (configMap = Map("inputFileName" -> "in.txt")
    

    The color parameter

    If you leave the color parameter unspecified, this method will configure the reporter it passes to run to print to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color, like this:

    scala> new ExampleSuite execute (color = false)
    

    The durations parameter

    If you leave the durations parameter unspecified, this method will configure the reporter it passes to run to not print durations for tests and suites to the standard output. If you want durations printed, specify true for durations, like this:

    scala> new ExampleSuite execute (durations = true)
    

    The shortstacks and fullstacks parameters

    If you leave both the shortstacks and fullstacks parameters unspecified, this method will configure the reporter it passes to run to not print stack traces for failed tests if it has a stack depth that identifies the offending line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true for shortstacks:

    scala> new ExampleSuite execute (shortstacks = true)
    

    For full stack traces, set fullstacks to true:

    scala> new ExampleSuite execute (fullstacks = true)
    

    If you specify true for both shortstacks and fullstacks, you'll get full stack traces.

    The stats parameter

    If you leave the stats parameter unspecified, this method will not fire RunStarting and either RunCompleted or RunAborted events to the reporter it passes to run. If you specify true for stats, this method will fire the run events to the reporter, and the reporter will print the expected test count before the run, and various statistics after, including the number of suites completed and number of tests that succeeded, failed, were ignored or marked pending. Here's how you get the stats:

    scala> new ExampleSuite execute (stats = true)
    

    To summarize, this method will pass to run:

    • testName - None if this method's testName parameter is left at its default value of null, else Some(testName).
    • reporter - a reporter that prints to the standard output
    • stopper - a Stopper whose apply method always returns false
    • filter - a Filter constructed with None for tagsToInclude and Set() for tagsToExclude
    • configMap - the configMap passed to this method
    • distributor - None
    • tracker - a new Tracker

    Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and can be used interchangably. The reason this method isn't named run is that it takes advantage of default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run, this method would have the same name but different arguments than the main run method that takes seven arguments. Thus it would overload and couldn't be used with default argument values.)

    Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName is null. Normally in Scala the type of testName would be Option[String] and the default value would be None, as it is in this trait's run method. The null value is used here for two reasons. First, in ScalaTest 1.5, execute was changed from four overloaded methods to one method with default values, taking advantage of the default and named parameters feature introduced in Scala 2.8. To not break existing source code, testName needed to have type String, as it did in two of the overloaded execute methods prior to 1.5. The other reason is that execute has always been designed to be called primarily from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king. A String type with a null default value lets users type suite.execute("my test name") rather than suite.execute(Some("my test name")), saving several keystrokes.

    The second non-idiomatic feature is that shortstacks and fullstacks are all lower case rather than camel case. This is done to be consistent with the Shell, which also uses those forms. The reason lower case is used in the Shell is to save keystrokes in an interpreter environment. Most Unix commands, for example, are all lower case, making them easier and quicker to type. In the ScalaTest Shell, methods like shortstacks, fullstacks, and nostats, etc., are designed to be all lower case so they feel more like shell commands than methods.

    testName

    the name of one test to run.

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    color

    a boolean that configures whether output is printed in color

    durations

    a boolean that configures whether test and suite durations are printed to the standard output

    shortstacks

    a boolean that configures whether short stack traces should be printed for test failures

    fullstacks

    a boolean that configures whether full stack traces should be printed for test failures

    stats

    a boolean that configures whether test and suite statistics are printed to the standard output

    Attributes
    final
  26. def expectResult (expected: Any)(actual: Any): Unit

    Expect that the value passed as expected equals the value passed as actual.

    Expect that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), expectResult returns normally. Else, expect throws a TestFailedException whose detail message includes the expected and actual values.

    expected

    the expected value

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
  27. def expectResult (expected: Any, clue: Any)(actual: Any): Unit

    Expect that the value passed as expected equals the value passed as actual.

    Expect that the value passed as expected equals the value passed as actual. If the actual equals the expected (as determined by ==), expectResult returns normally. Else, if actual is not equal to expected, expectResult throws a TestFailedException whose detail message includes the expected and actual values, as well as the String obtained by invoking toString on the passed clue.

    expected

    the expected value

    clue

    An object whose toString method returns a message to include in a failure report.

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
  28. def expectedTestCount (filter: Filter): Int

    The total number of tests that are expected to run when this Suite's run method is invoked.

    The total number of tests that are expected to run when this Suite's run method is invoked.

    This trait's implementation of this method returns the sum of:

    • the size of the testNames List, minus the number of tests marked as ignored and any tests that are exluded by the passed Filter
    • the sum of the values obtained by invoking expectedTestCount on every nested Suite contained in nestedSuites
    filter

    a Filter with which to filter tests to count based on their tags

    Definition Classes
    SuiteAbstractSuite
  29. def fail (cause: Throwable): Nothing

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestFailedException will return cause.toString.

    cause

    a Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
  30. def fail (message: String, cause: Throwable): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
  31. def fail (message: String): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    message

    A message describing the failure.

    Definition Classes
    Assertions
  32. def fail (): Nothing

    Throws TestFailedException to indicate a test failed.

    Throws TestFailedException to indicate a test failed.

    Definition Classes
    Assertions
  33. def finalize (): Unit

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  34. def getClass (): java.lang.Class[_]

    Attributes
    final
    Definition Classes
    AnyRef
  35. def hashCode (): Int

    Definition Classes
    AnyRef → Any
  36. def intercept [T <: AnyRef] (f: ⇒ Any)(implicit manifest: Manifest[T]): T

    Intercept and return an exception that's expected to be thrown by the passed function value.

    Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

    Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

    f

    the function value that should throw the expected exception

    manifest

    an implicit Manifest representing the type of the specified type parameter.

    returns

    the intercepted exception, if it is of the expected type

    Definition Classes
    Assertions
  37. def isInstanceOf [T0] : Boolean

    Attributes
    final
    Definition Classes
    Any
  38. def ne (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  39. def nestedSuites : IndexedSeq[Suite]

    An immutable IndexedSeq of this Suite object's nested Suites.

    An immutable IndexedSeq of this Suite object's nested Suites. If this Suite contains no nested Suites, this method returns an empty IndexedSeq. This trait's implementation of this method returns an empty List.

    Definition Classes
    SuiteAbstractSuite
  40. def notify (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
  41. def notifyAll (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
  42. def pending : PendingNothing

    Throws TestPendingException to indicate a test is pending.

    Throws TestPendingException to indicate a test is pending.

    A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

    To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException. Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.

    Note: This method always completes abruptly with a TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as in pending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite or FunSpec to be denoted by placing "(pending)" after the test name, as in:

    test("that style rules are not laws") (pending)
    

    Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "(pending()) looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.

  43. def pendingUntilFixed (f: ⇒ Unit): Unit

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the pendingUntilFixed call. In other words, a pendingUntilFixed surrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to remove pendingUntilFixed calls when there are no longer needed.

    This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked with pendingUntilFixed will no longer throw an exception (because the problem has been fixed). This will in turn cause pendingUntilFixed to throw TestFailedException with a detail message explaining you need to go back and remove the pendingUntilFixed call as the problem orginally causing your test code to fail has been fixed.

    f

    a block of code, which if it completes abruptly, should trigger a TestPendingException

  44. def rerunner : Option[String]

    The fully qualified class name of the rerunner to rerun this suite.

    The fully qualified class name of the rerunner to rerun this suite. This implementation will look at this.getClass and see if it is either an accessible Suite, or it has a WrapWith annotation. If so, it returns the fully qualified class name wrapped in a Some, or else it returns None.

    Definition Classes
    SuiteAbstractSuite
  45. def run (testName: Option[String], args: Args): Status

    Runs this suite of tests.

    Runs this suite of tests.

    If testName is None, this trait's implementation of this method calls these two methods on this object in this order:

    • runNestedSuites(report, stopper, tagsToInclude, tagsToExclude, configMap, distributor)
    • runTests(testName, report, stopper, tagsToInclude, tagsToExclude, configMap)

    If testName is defined, then this trait's implementation of this method calls runTests, but does not call runNestedSuites. This behavior is part of the contract of this method. Subclasses that override run must take care not to call runNestedSuites if testName is defined. (The OneInstancePerTest trait depends on this behavior, for example.)

    Subclasses and subtraits that override this run method can implement them without invoking either the runTests or runNestedSuites methods, which are invoked by this trait's implementation of this method. It is recommended, but not required, that subclasses and subtraits that override run in a way that does not invoke runNestedSuites also override runNestedSuites and make it final. Similarly it is recommended, but not required, that subclasses and subtraits that override run in a way that does not invoke runTests also override runTests (and runTest, which this trait's implementation of runTests calls) and make it final. The implementation of these final methods can either invoke the superclass implementation of the method, or throw an UnsupportedOperationException if appropriate. The reason for this recommendation is that ScalaTest includes several traits that override these methods to allow behavior to be mixed into a Suite. For example, trait BeforeAndAfterEach overrides runTestss. In a Suite subclass that no longer invokes runTests from run, the BeforeAndAfterEach trait is not applicable. Mixing it in would have no effect. By making runTests final in such a Suite subtrait, you make the attempt to mix BeforeAndAfterEach into a subclass of your subtrait a compiler error. (It would fail to compile with a complaint that BeforeAndAfterEach is trying to override runTests, which is a final method in your trait.)

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all tests and nested suites started by this method have completed, and whether or not a failure occurred.

    Definition Classes
    SuiteAbstractSuite
  46. def run (testName: Option[String], reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker): Status

    This overloaded form of run has been deprecated and will be removed in a future version of ScalaTest. Please use the run method that takes two parameters instead.

    This overloaded form of run has been deprecated and will be removed in a future version of ScalaTest. Please use the run method that takes two parameters instead.

    This final implementation of this method constructs a Args instance from the passed reporter, stopper, filter, configMap, distributor, and tracker, and invokes the overloaded run method that takes two parameters, passing in the specified testName and the newly constructed Args. This method implementation enables existing code that called into the old run method to continue to work during the deprecation cycle. Subclasses and subtraits that overrode this method, however, will need to be changed to use the new two-parameter form instead.

    testName

    an optional name of one test to execute. If None, all relevant tests should be executed. I.e., None acts like a wildcard that means execute all relevant tests in this Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be executed by another entity, such as concurrently by a pool of threads. If None, nested Suites will be executed sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Attributes
    final
    Definition Classes
    AbstractSuite
  47. def runNestedSuites (args: Args): Status

    Run zero to many of this Suite's nested Suites.

    Run zero to many of this Suite's nested Suites.

    If the passed distributor is None, this trait's implementation of this method invokes run on each nested Suite in the List obtained by invoking nestedSuites. If a nested Suite's run method completes abruptly with an exception, this trait's implementation of this method reports that the Suite aborted and attempts to run the next nested Suite. If the passed distributor is defined, this trait's implementation puts each nested Suite into the Distributor contained in the Some, in the order in which the Suites appear in the List returned by nestedSuites, passing in a new Tracker obtained by invoking nextTracker on the Tracker passed to this method.

    Implementations of this method are responsible for ensuring SuiteStarting events are fired to the Reporter before executing any nested Suite, and either SuiteCompleted or SuiteAborted after executing any nested Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all nested suites started by this method have completed, and whether or not a failure occurred.

    Attributes
    protected
    Definition Classes
    SuiteAbstractSuite
  48. def runTest (testName: String, args: Args): Status

    Run a test.

    Run a test.

    This trait's implementation uses Java reflection to invoke on this object the test method identified by the passed testName.

    Implementations of this method are responsible for ensuring a TestStarting event is fired to the Reporter before executing any test, and either TestSucceeded, TestFailed, or TestPending after executing any nested Suite. (If a test is marked with the org.scalatest.Ignore tag, the runTests method is responsible for ensuring a TestIgnored event is fired and that this runTest method is not invoked for that ignored test.)

    testName

    the name of one test to run.

    args

    the Args for this run

    returns

    a Status object that indicates when the test started by this method has completed, and whether or not it failed .

    Attributes
    protected
    Definition Classes
    SuiteAbstractSuite
  49. def runTests (testName: Option[String], args: Args): Status

    Run zero to many of this Suite's tests.

    Run zero to many of this Suite's tests.

    This method takes a testName parameter that optionally specifies a test to invoke. If testName is defined, this trait's implementation of this method invokes runTest on this object, passing in:

    • testName - the String value of the testName Option passed to this method
    • reporter - the Reporter passed to this method, or one that wraps and delegates to it
    • stopper - the Stopper passed to this method, or one that wraps and delegates to it
    • configMap - the configMap Map passed to this method, or one that wraps and delegates to it

    This method takes a Filter, which encapsulates an optional Set of tag names that should be included (tagsToInclude) and a Set that should be excluded (tagsToExclude), when deciding which of this Suite's tests to run. If tagsToInclude is None, all tests will be run except those those belonging to tags listed in the tagsToExclude Set. If tagsToInclude is defined, only tests belonging to tags mentioned in the tagsToInclude Set, and not mentioned in the tagsToExcludeSet will be run. However, if testName is defined, tagsToInclude and tagsToExclude are essentially ignored. Only if testName is None will tagsToInclude and tagsToExclude be consulted to determine which of the tests named in the testNames Set should be run. This trait's implementation behaves this way, and it is part of the general contract of this method, so all overridden forms of this method should behave this way as well. For more information on test tags, see the main documentation for this trait and for class Filter. Note that this means that even if a test is marked as ignored, for example a test method in a Suite annotated with org.scalatest.Ignore, if that test name is passed as testName to runTest, it will be invoked despite the Ignore annotation.

    If testName is None, this trait's implementation of this method invokes testNames on this Suite to get a Set of names of tests to potentially run. (A testNames value of None essentially acts as a wildcard that means all tests in this Suite that are selected by tagsToInclude and tagsToExclude should be run.) For each test in the testName Set, in the order they appear in the iterator obtained by invoking the elements method on the Set, this trait's implementation of this method checks whether the test should be run based on the Filter. If so, this implementation invokes runTest, passing in:

    • testName - the String name of the test to run (which will be one of the names in the testNames Set)
    • reporter - the Reporter passed to this method, or one that wraps and delegates to it
    • stopper - the Stopper passed to this method, or one that wraps and delegates to it
    • configMap - the configMap passed to this method, or one that wraps and delegates to it

    If a test is marked with the org.scalatest.Ignore tag, implementations of this method are responsible for ensuring a TestIgnored event is fired for that test and that runTest is not called for that test.

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all tests started by this method have completed, and whether or not a failure occurred.

    Attributes
    protected
    Definition Classes
    SuiteAbstractSuite
  50. val styleName : String

    Suite style name.

    Suite style name.

    Definition Classes
    SuiteAbstractSuite
  51. def suiteId : String

    A string ID for this Suite that is intended to be unique among all suites reported during a run.

    A string ID for this Suite that is intended to be unique among all suites reported during a run.

    This trait's implementation of this method returns the fully qualified name of this object's class. Each suite reported during a run will commonly be an instance of a different Suite class, and in such cases, this default implementation of this method will suffice. However, in special cases you may need to override this method to ensure it is unique for each reported suite. For example, if you write a Suite subclass that reads in a file whose name is passed to its constructor and dynamically creates a suite of tests based on the information in that file, you will likely need to override this method in your Suite subclass, perhaps by appending the pathname of the file to the fully qualified class name. That way if you run a suite of tests based on a directory full of these files, you'll have unique suite IDs for each reported suite.

    The suite ID is intended to be unique, because ScalaTest does not enforce that it is unique. If it is not unique, then you may not be able to uniquely identify a particular test of a particular suite. This ability is used, for example, to dynamically tag tests as having failed in the previous run when rerunning only failed tests.

    returns

    this Suite object's ID.

  52. def suiteName : String

    A user-friendly suite name for this Suite.

    A user-friendly suite name for this Suite.

    This trait's implementation of this method returns the simple name of this object's class. This trait's implementation of runNestedSuites calls this method to obtain a name for Reports to pass to the suiteStarting, suiteCompleted, and suiteAborted methods of the Reporter.

    returns

    this Suite object's suite name.

  53. def synchronized [T0] (arg0: ⇒ T0): T0

    Attributes
    final
    Definition Classes
    AnyRef
  54. def tags : Map[String, Set[String]]

    A Map whose keys are String tag names with which tests in this Suite are marked, and whose values are the Set of test names marked with each tag.

    A Map whose keys are String tag names with which tests in this Suite are marked, and whose values are the Set of test names marked with each tag. If this Suite contains no tags, this method returns an empty Map.

    This trait's implementation of this method uses Java reflection to discover any Java annotations attached to its test methods. The fully qualified name of each unique annotation that extends TagAnnotation is considered a tag. This trait's implementation of this method, therefore, places one key/value pair into to the Map for each unique tag annotation name discovered through reflection. The mapped value for each tag name key will contain the test method name, as provided via the testNames method.

    In addition to test methods annotations, this trait's implementation will also auto-tag test methods with class level annotations. For example, if you annotate @Ignore at the class level, all test methods in the class will be auto-annotated with @Ignore.

    Subclasses may override this method to define and/or discover tags in a custom manner, but overriding method implementations should never return an empty Set as a value. If a tag has no tests, its name should not appear as a key in the returned Map.

    Definition Classes
    SuiteAbstractSuite
  55. def testDataFor (testName: String, theConfigMap: Map[String, Any] = Map.empty): TestData

    Provides a TestData instance for the passed test name, given the passed config map.

    Provides a TestData instance for the passed test name, given the passed config map.

    This method is used to obtain a TestData instance to pass to withFixture(NoArgTest) and withFixture(OneArgTest) and the beforeEach and afterEach methods of trait BeforeAndAfterEach.

    testName

    the name of the test for which to return a TestData instance

    theConfigMap

    the config map to include in the returned TestData

    returns

    a TestData instance for the specified test, which includes the specified config map

  56. def testNames : Set[String]

    A Set of test names.

    A Set of test names. If this Suite contains no tests, this method returns an empty Set.

    Suite has been deprecated as a style trait. During the deprecation period, the following behavior will continue to work as before, but will go away at the conclusion of the deprecation period: This trait's implementation of this method uses Java reflection to discover all public methods whose name starts with "test", which take either nothing or a single Informer as parameters. For each discovered test method, it assigns a test name comprised of just the method name if the method takes no parameters, or the method name plus (Informer) if the method takes a Informer. Here are a few method signatures and the names that this trait's implementation assigns them:

    def testCat() {}         // test name: "testCat"
    def testCat(Informer) {} // test name: "testCat(Informer)"
    def testDog() {}         // test name: "testDog"
    def testDog(Informer) {} // test name: "testDog(Informer)"
    def test() {}            // test name: "test"
    def test(Informer) {}    // test name: "test(Informer)"
    

    This trait's implementation of this method returns an immutable Set of all such names, excluding the name testNames. The iterator obtained by invoking elements on this returned Set will produce the test names in their natural order, as determined by String's compareTo method.

    This trait's implementation of runTests invokes this method and calls runTest for each test name in the order they appear in the returned Set's iterator. Although this trait's implementation of this method returns a Set whose iterator produces String test names in a well-defined order, the contract of this method does not required a defined order. Subclasses are free to override this method and return test names in an undefined order, or in a defined order that's different from String's natural order.

    Subclasses may override this method to produce test names in a custom manner. One potential reason to override testNames is to run tests in a different order, for example, to ensure that tests that depend on other tests are run after those other tests. Another potential reason to override is allow tests to be defined in a different manner, such as methods annotated @Test annotations (as is done in JUnitSuite and TestNGSuite) or test functions registered during construction (as is done in FunSuite and FunSpec).

    In ScalaTest's event model, a test may be surrounded by “scopes.” Each test and scope is associated with string of text. A test's name is concatenation of the text of any surrounding scopes followed by the text provided with the test itself, after each text element has been trimmed and one space inserted between each component. Here's an example:

    package org.scalatest.examples.freespec
    
    import org.scalatest.FreeSpec
    class SetSpec extends FreeSpec {
    "A Set" - { "when empty" - { "should have size 0" in { assert(Set.empty.size === 0) }
    "should produce NoSuchElementException when head is invoked" in { intercept[NoSuchElementException] { Set.empty.head } } } } }

    The above FreeSpec contains two tests, both nested inside the same two scopes. The outermost scope names the subject, A Set. The nested scope qualifies the subject with when empty. Inside that scope are the two tests. The text of the tests are:

    • should have size 0
    • should produce NoSuchElementException when head is invoked

    Therefore, the names of these two tests are:

    • A Stack when empty should have size 0
    • A Stack when empty should produce NoSuchElementException when head is invoked

    Note that because the component scope and test text strings are trimmed, any leading or trailing space will be dropped before they are strung together to form the test name, with each trimmed component separated by a space. If the scopes in the above example had text " A Set " and " when empty ", and the first test had text " should have size 0 ", its test name would still be the same, "A Set when empty should have size 0".

    Definition Classes
    SuiteAbstractSuite
  57. def toString (): String

    Definition Classes
    AnyRef → Any
  58. def wait (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  59. def wait (arg0: Long, arg1: Int): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  60. def wait (arg0: Long): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  61. def withClue [T] (clue: Any)(fun: ⇒ T): T

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it.

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

    This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:

    withClue("(Employee's name was: " + employee.name + ")") {
      intercept[IllegalArgumentException] {
        employee.getTask(-1)
      }
    }
    

    If an invocation of intercept completed abruptly with an exception, the resulting message would be something like:

    (Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
    

    Definition Classes
    Assertions
  62. def withFixture (test: NoArgTest): Unit

    Run the passed test function in the context of a fixture established by this method.

    Run the passed test function in the context of a fixture established by this method.

    This method should set up the fixture needed by the tests of the current suite, invoke the test function, and if needed, perform any clean up needed after the test completes. Because the NoArgTest function passed to this method takes no parameters, preparing the fixture will require side effects, such as reassigning instance vars in this Suite or initializing a globally accessible external database. If you want to avoid reassigning instance vars you can use fixture.Suite.

    This trait's implementation of runTest invokes this method for each test, passing in a NoArgTest whose apply method will execute the code of the test.

    This trait's implementation of this method simply invokes the passed NoArgTest function.

    test

    the no-arg test function to run with a fixture

    Attributes
    protected
    Definition Classes
    SuiteAbstractSuite
  63. def expect (expected: Any)(actual: Any): Unit

    This expect method has been deprecated; Please use expectResult instead.

    This expect method has been deprecated; Please use expectResult instead.

    To get rid of the deprecation warning, simply replace expect with expectResult. The name expect will be used for a different purposes in a future version of ScalaTest.

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of expectResult instead.

  64. def expect (expected: Any, clue: Any)(actual: Any): Unit

    This expect method has been deprecated; Please use expectResult instead.

    This expect method has been deprecated; Please use expectResult instead.

    To get rid of the deprecation warning, simply replace expect with expectResult. The name expect will be used for a different purposes in a future version of ScalaTest.

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of expectResult instead.

Inherited from Serializable

Inherited from AbstractSuite

Inherited from Assertions

Inherited from AnyRef

Inherited from Any