Assert that an Option[String]
is None
.
Assert that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestFailedException
with the String
value of the Some
included in the TestFailedException
's
detail message.
This form of assert
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assert(a === b)
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
Assert that an Option[String]
is None
.
Assert that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestFailedException
with the String
value of the Some
, as well as the
String
obtained by invoking toString
on the
specified clue
,
included in the TestFailedException
's detail message.
This form of assert
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assert(a === b, "extra info reported if assertion fails")
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
An objects whose toString
method returns a message to include in a failure report.
Assert that a boolean condition, described in String
message
, is true.
Assert that a boolean condition, described in String
message
, is true.
If the condition is true
, this method returns normally.
Else, it throws TestFailedException
with the
String
obtained by invoking toString
on the
specified clue
as the exception's detail message.
the boolean condition to assert
An objects whose toString
method returns a message to include in a failure report.
Assert that a boolean condition is true.
Assert that a boolean condition is true.
If the condition is true
, this method returns normally.
Else, it throws TestFailedException
.
the boolean condition to assert
Assume that an Option[String]
is None
.
Assume that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestCanceledException
with the String
value of the Some
included in the TestCanceledException
's
detail message.
This form of assume
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assert(a === b)
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
Assume that an Option[String]
is None
.
Assume that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestCanceledException
with the String
value of the Some
, as well as the
String
obtained by invoking toString
on the
specified clue
,
included in the TestCanceledException
's detail message.
This form of assume
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assume(a === b, "extra info reported if assertion fails")
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
An objects whose toString
method returns a message to include in a failure report.
Assume that a boolean condition, described in String
message
, is true.
Assume that a boolean condition, described in String
message
, is true.
If the condition is true
, this method returns normally.
Else, it throws TestCanceledException
with the
String
obtained by invoking toString
on the
specified clue
as the exception's detail message.
the boolean condition to assume
An objects whose toString
method returns a message to include in a failure report.
Assume that a boolean condition is true.
Assume that a boolean condition is true.
If the condition is true
, this method returns normally.
Else, it throws TestCanceledException
.
the boolean condition to assert
Throws TestCanceledException
, with the passed
Throwable
cause, to indicate a test failed.
Throws TestCanceledException
, with the passed
Throwable
cause, to indicate a test failed.
The getMessage
method of the thrown TestCanceledException
will return cause.toString
.
a Throwable
that indicates the cause of the cancellation.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
A message describing the failure.
A Throwable
that indicates the cause of the failure.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message, to indicate a test was canceled.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message, to indicate a test was canceled.
A message describing the cancellation.
Throws TestCanceledException
to indicate a test was canceled.
Throws TestCanceledException
to indicate a test was canceled.
Implicit conversion from Any
to Equalizer
, used to enable
assertions with ===
comparisons.
Implicit conversion from Any
to Equalizer
, used to enable
assertions with ===
comparisons.
For more information on this mechanism, see the documentation for Equalizer.
Because trait Suite
mixes in Assertions
, this implicit conversion will always be
available by default in ScalaTest Suite
s. This is the only implicit conversion that is in scope by default in every
ScalaTest Suite
. Other implicit conversions offered by ScalaTest, such as those that support the matchers DSL
or invokePrivate
, must be explicitly invited into your test code, either by mixing in a trait or importing the
members of its companion object. The reason ScalaTest requires you to invite in implicit conversions (with the exception of the
implicit conversion for ===
operator) is because if one of ScalaTest's implicit conversions clashes with an
implicit conversion used in the code you are trying to test, your program won't compile. Thus there is a chance that if you
are ever trying to use a library or test some code that also offers an implicit conversion involving a ===
operator,
you could run into the problem of a compiler error due to an ambiguous implicit conversion. If that happens, you can turn off
the implicit conversion offered by this convertToEqualizer
method simply by overriding the method in your
Suite
subclass, but not marking it as implicit:
// In your Suite subclass override def convertToEqualizer(left: Any) = new Equalizer(left)
the object whose type to convert to Equalizer
.
Executes this Suite
, printing results to the standard output.
Executes this Suite
, printing results to the standard output.
This method, which simply invokes the other overloaded form of execute
with default parameter values,
is intended for use only as a mini-DSL for the Scala interpreter. It allows you to execute a Suite
in the
interpreter with a minimum of finger typing:
scala> new SetSpec execute An empty Set - should have size 0 - should produce NoSuchElementException when head is invoked !!! IGNORED !!!
If you do ever want to invoke execute
outside the Scala interpreter, it is best style to invoke it with
empty parens to indicate it has a side effect, like this:
// Use empty parens form in regular code (outside the Scala interpreter) (new ExampleSuite).execute()
Executes one or more tests in this Suite
, printing results to the standard output.
Executes one or more tests in this Suite
, printing results to the standard output.
This method invokes run
on itself, passing in values that can be configured via the parameters to this
method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter.
Here's a summary of this method's parameters and how you can use them:
The testName
parameter
If you leave testName
at its default value (of null
), this method will pass None
to
the testName
parameter of run
, and as a result all the tests in this suite will be executed. If you
specify a testName
, this method will pass Some(testName)
to run
, and only that test
will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:
scala> new ExampleSuite execute
(The above syntax actually invokes the overloaded parameterless form of execute
, which calls this form with its default parameter values.)
To run just the test named "my favorite test"
in a suite from the Scala interpreter, you would write:
scala> new ExampleSuite execute ("my favorite test")
Or:
scala> new ExampleSuite execute (testName = "my favorite test")
The configMap
parameter
If you provide a value for the configMap
parameter, this method will pass it to run
. If not, the default value
of an empty Map
will be passed. For more information on how to use a config map to configure your test suites, see
the config map section in the main documentation for this trait. Here's an example in which you configure
a run with the name of an input file:
scala> new ExampleSuite execute (configMap = Map("inputFileName" -> "in.txt")
The color
parameter
If you leave the color
parameter unspecified, this method will configure the reporter it passes to run
to print
to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color
, like this:
scala> new ExampleSuite execute (color = false)
The durations
parameter
If you leave the durations
parameter unspecified, this method will configure the reporter it passes to run
to
not print durations for tests and suites to the standard output. If you want durations printed, specify true for durations
,
like this:
scala> new ExampleSuite execute (durations = true)
The shortstacks
and fullstacks
parameters
If you leave both the shortstacks
and fullstacks
parameters unspecified, this method will configure the reporter
it passes to run
to not print stack traces for failed tests if it has a stack depth that identifies the offending
line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true for
shortstacks
:
scala> new ExampleSuite execute (shortstacks = true)
For full stack traces, set fullstacks
to true:
scala> new ExampleSuite execute (fullstacks = true)
If you specify true for both shortstacks
and fullstacks
, you'll get full stack traces.
The stats
parameter
If you leave the stats
parameter unspecified, this method will not fire RunStarting
and either RunCompleted
or RunAborted
events to the reporter it passes to run
.
If you specify true for stats
, this method will fire the run events to the reporter, and the reporter will print the
expected test count before the run, and various statistics after, including the number of suites completed and number of tests that
succeeded, failed, were ignored or marked pending. Here's how you get the stats:
scala> new ExampleSuite execute (stats = true)
To summarize, this method will pass to run
:
testName
- None
if this method's testName
parameter is left at its default value of null
, else Some(testName)
.reporter
- a reporter that prints to the standard outputstopper
- a Stopper
whose apply
method always returns false
filter
- a Filter
constructed with None
for tagsToInclude
and Set()
for tagsToExclude
configMap
- the configMap
passed to this methoddistributor
- None
tracker
- a new Tracker
Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and
can be used interchangably. The reason this method isn't named run
is that it takes advantage of
default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run
,
this method would have the same name but different arguments than the main run
method that
takes seven arguments. Thus it would overload and couldn't be used with default argument values.)
Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName
is null
.
Normally in Scala the type of testName
would be Option[String]
and the default value would
be None
, as it is in this trait's run
method. The null
value is used here for two reasons. First, in
ScalaTest 1.5, execute
was changed from four overloaded methods to one method with default values, taking advantage of
the default and named parameters feature introduced in Scala 2.8.
To not break existing source code, testName
needed to have type String
, as it did in two of the overloaded
execute
methods prior to 1.5. The other reason is that execute
has always been designed to be called primarily
from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king.
A String
type with a null
default value lets users type suite.execute("my test name")
rather than
suite.execute(Some("my test name"))
, saving several keystrokes.
The second non-idiomatic feature is that shortstacks
and fullstacks
are all lower case rather than
camel case. This is done to be consistent with the Shell
, which also uses those forms. The reason
lower case is used in the Shell
is to save keystrokes in an interpreter environment. Most Unix commands, for
example, are all lower case, making them easier and quicker to type. In the ScalaTest
Shell
, methods like shortstacks
, fullstacks
, and nostats
, etc., are
designed to be all lower case so they feel more like shell commands than methods.
the name of one test to run.
a Map
of key-value pairs that can be used by the executing Suite
of tests.
a boolean that configures whether output is printed in color
a boolean that configures whether test and suite durations are printed to the standard output
a boolean that configures whether short stack traces should be printed for test failures
a boolean that configures whether full stack traces should be printed for test failures
a boolean that configures whether test and suite statistics are printed to the standard output
Expect that the value passed as expected
equals the value passed as actual
.
Expect that the value passed as expected
equals the value passed as actual
.
If the actual
value equals the expected
value
(as determined by ==
), expectResult
returns
normally. Else, expect
throws a
TestFailedException
whose detail message includes the expected and actual values.
the expected value
the actual value, which should equal the passed expected
value
Expect that the value passed as expected
equals the value passed as actual
.
Expect that the value passed as expected
equals the value passed as actual
.
If the actual
equals the expected
(as determined by ==
), expectResult
returns
normally. Else, if actual
is not equal to expected
, expectResult
throws a
TestFailedException
whose detail message includes the expected and actual values, as well as the String
obtained by invoking toString
on the passed clue
.
the expected value
An object whose toString
method returns a message to include in a failure report.
the actual value, which should equal the passed expected
value
The total number of tests that are expected to run when this Suite
's run
method is invoked.
The total number of tests that are expected to run when this Suite
's run
method is invoked.
This trait's implementation of this method returns the sum of:
testNames
List
, minus the number of tests marked as ignored and
any tests that are exluded by the passed Filter
expectedTestCount
on every nested Suite
contained in
nestedSuites
a Filter
with which to filter tests to count based on their tags
Throws TestFailedException
, with the passed
Throwable
cause, to indicate a test failed.
Throws TestFailedException
, with the passed
Throwable
cause, to indicate a test failed.
The getMessage
method of the thrown TestFailedException
will return cause.toString
.
a Throwable
that indicates the cause of the failure.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
A message describing the failure.
A Throwable
that indicates the cause of the failure.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message, to indicate a test failed.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message, to indicate a test failed.
A message describing the failure.
Throws TestFailedException
to indicate a test failed.
Throws TestFailedException
to indicate a test failed.
Intercept and return an exception that's expected to be thrown by the passed function value.
Intercept and return an exception that's expected to
be thrown by the passed function value. The thrown exception must be an instance of the
type specified by the type parameter of this method. This method invokes the passed
function. If the function throws an exception that's an instance of the specified type,
this method returns that exception. Else, whether the passed function returns normally
or completes abruptly with a different exception, this method throws TestFailedException
.
Note that the type specified as this method's type parameter may represent any subtype of
AnyRef
, not just Throwable
or one of its subclasses. In
Scala, exceptions can be caught based on traits they implement, so it may at times make sense
to specify a trait that the intercepted exception's class must mix in. If a class instance is
passed for a type that could not possibly be used to catch an exception (such as String
,
for example), this method will complete abruptly with a TestFailedException
.
the function value that should throw the expected exception
an implicit Manifest
representing the type of the specified
type parameter.
the intercepted exception, if it is of the expected type
An immutable IndexedSeq
of this Suite
object's nested Suite
s.
An immutable IndexedSeq
of this Suite
object's nested Suite
s. If this Suite
contains no nested Suite
s,
this method returns an empty IndexedSeq
. This trait's implementation of this method returns an empty List
.
Throws TestPendingException
to indicate a test is pending.
Throws TestPendingException
to indicate a test is pending.
A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.
To support this style of testing, a test can be given a name that specifies one
bit of behavior required by the system being tested. The test can also include some code that
sends more information about the behavior to the reporter when the tests run. At the end of the test,
it can call method pending
, which will cause it to complete abruptly with TestPendingException
.
Because tests in ScalaTest can be designated as pending with TestPendingException
, both the test name and any information
sent to the reporter when running the test can appear in the report of a test run. (In other words,
the code of a pending test is executed just like any other test.) However, because the test completes abruptly
with TestPendingException
, the test will be reported as pending, to indicate
the actual test, and possibly the functionality it is intended to test, has not yet been implemented.
Note: This method always completes abruptly with a TestPendingException
. Thus it always has a side
effect. Methods with side effects are usually invoked with parentheses, as in pending()
. This
method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it
forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite
or FunSpec
to be denoted by placing "(pending)
" after the test name, as in:
test("that style rules are not laws") (pending)
Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate
it is pending. Whereas "(pending())
looks more like a method call, "(pending)
" lets readers
stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.
Execute the passed block of code, and if it completes abruptly, throw TestPendingException
, else
throw TestFailedException
.
Execute the passed block of code, and if it completes abruptly, throw TestPendingException
, else
throw TestFailedException
.
This method can be used to temporarily change a failing test into a pending test in such a way that it will
automatically turn back into a failing test once the problem originally causing the test to fail has been fixed.
At that point, you need only remove the pendingUntilFixed
call. In other words, a
pendingUntilFixed
surrounding a block of code that isn't broken is treated as a test failure.
The motivation for this behavior is to encourage people to remove pendingUntilFixed
calls when
there are no longer needed.
This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may
encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this
case you can mark the bit of test code causing the failure with pendingUntilFixed
. You can then write more
tests and functionality that eventually will get your production code to a point where the original test won't fail anymore.
At this point the code block marked with pendingUntilFixed
will no longer throw an exception (because the
problem has been fixed). This will in turn cause pendingUntilFixed
to throw TestFailedException
with a detail message explaining you need to go back and remove the pendingUntilFixed
call as the problem orginally
causing your test code to fail has been fixed.
a block of code, which if it completes abruptly, should trigger a TestPendingException
The fully qualified class name of the rerunner to rerun this suite.
The fully qualified class name of the rerunner to rerun this suite. This implementation will look at this.getClass and see if it is either an accessible Suite, or it has a WrapWith annotation. If so, it returns the fully qualified class name wrapped in a Some, or else it returns None.
Runs TestNG with the XML config file or files provided to the primary constructor, passing reports to the specified Reporter
.
Runs TestNG with the XML config file or files provided to the primary constructor, passing reports to the specified Reporter
.
If present (Some), then only the method with the supplied name is executed and groups will be ignored.
the Args
for this run
a Status
object that indicates when all tests and nested suites started by this method have completed, and whether or not a failure occurred.
This overloaded form of run
has been deprecated and will be removed in a future
version of ScalaTest. Please use the run
method that takes two parameters instead.
This overloaded form of run
has been deprecated and will be removed in a future
version of ScalaTest. Please use the run
method that takes two parameters instead.
This final implementation of this method constructs a Args
instance from the passed
reporter
, stopper
, filter
, configMap
, distributor
,
and tracker
, and invokes the overloaded run
method that takes two parameters,
passing in the specified testName
and the newly constructed Args
. This method
implementation enables existing code that called into the old run
method to continue to work
during the deprecation cycle. Subclasses and subtraits that overrode this method, however, will need to
be changed to use the new two-parameter form instead.
an optional name of one test to execute. If None
, all relevant tests should be executed.
I.e., None
acts like a wildcard that means execute all relevant tests in this Suite
.
the Reporter
to which results will be reported
the Stopper
that will be consulted to determine whether to stop execution early.
a Filter
with which to filter tests based on their tags
a Map
of key-value pairs that can be used by the executing Suite
of tests.
an optional Distributor
, into which to put nested Suite
s to be executed
by another entity, such as concurrently by a pool of threads. If None
, nested Suite
s will be executed sequentially.
a Tracker
tracking Ordinal
s being fired by the current thread.
Throws UnsupportedOperationException
, because this method is unused by this
trait, given this trait's run
method delegates to TestNG to run
its tests.
Throws UnsupportedOperationException
, because this method is unused by this
trait, given this trait's run
method delegates to TestNG to run
its tests.
The main purpose of this method implementation is to render a compiler error an attempt
to mix in a trait that overrides runNestedSuites
. Because this
trait does not actually use runNestedSuites
, the attempt to mix
in behavior would very likely not work.
the Args
for this run
a Status
object that indicates when all nested suites started by this method have completed, and whether or not a failure occurred.
Throws UnsupportedOperationException
, because this method is unused by this
trait, given this trait's run
method delegates to TestNG to run
its tests.
Throws UnsupportedOperationException
, because this method is unused by this
trait, given this trait's run
method delegates to TestNG to run
its tests.
The main purpose of this method implementation is to render a compiler error an attempt
to mix in a trait that overrides runTest
. Because this
trait does not actually use runTest
, the attempt to mix
in behavior would very likely not work.
the name of one test to run.
the Args
for this run
a Status
object that indicates when the test started by this method has completed, and whether or not it failed .
Throws UnsupportedOperationException
, because this method is unused by this
trait, given this trait's run
method delegates to TestNG to run
its tests.
Throws UnsupportedOperationException
, because this method is unused by this
trait, given this trait's run
method delegates to TestNG to run
its tests.
The main purpose of this method implementation is to render a compiler error an attempt
to mix in a trait that overrides runTests
. Because this
trait does not actually use runTests
, the attempt to mix
in behavior would very likely not work.
an optional name of one test to run. If None
, all relevant tests should be run.
I.e., None
acts like a wildcard that means run all relevant tests in this Suite
.
the Args
for this run
a Status
object that indicates when all tests started by this method have completed, and whether or not a failure occurred.
Suite style name.
Suite style name.
A string ID for this Suite
that is intended to be unique among all suites reported during a run.
A string ID for this Suite
that is intended to be unique among all suites reported during a run.
This trait's
implementation of this method returns the fully qualified name of this object's class.
Each suite reported during a run will commonly be an instance of a different Suite
class,
and in such cases, this default implementation of this method will suffice. However, in special cases
you may need to override this method to ensure it is unique for each reported suite. For example, if you write
a Suite
subclass that reads in a file whose name is passed to its constructor and dynamically
creates a suite of tests based on the information in that file, you will likely need to override this method
in your Suite
subclass, perhaps by appending the pathname of the file to the fully qualified class name.
That way if you run a suite of tests based on a directory full of these files, you'll have unique suite IDs for
each reported suite.
The suite ID is intended to be unique, because ScalaTest does not enforce that it is unique. If it is not unique, then you may not be able to uniquely identify a particular test of a particular suite. This ability is used, for example, to dynamically tag tests as having failed in the previous run when rerunning only failed tests.
this Suite
object's ID.
A user-friendly suite name for this Suite
.
A user-friendly suite name for this Suite
.
This trait's
implementation of this method returns the simple name of this object's class. This
trait's implementation of runNestedSuites
calls this method to obtain a
name for Report
s to pass to the suiteStarting
, suiteCompleted
,
and suiteAborted
methods of the Reporter
.
this Suite
object's suite name.
A Map
whose keys are String
tag names with which tests in this Suite
are marked, and
whose values are the Set
of test names marked with each tag.
A Map
whose keys are String
tag names with which tests in this Suite
are marked, and
whose values are the Set
of test names marked with each tag. If this Suite
contains no tags, this
method returns an empty Map
.
This trait's implementation of this method uses Java reflection to discover any Java annotations attached to its test methods. The
fully qualified name of each unique annotation that extends TagAnnotation
is considered a tag. This trait's
implementation of this method, therefore, places one key/value pair into to the
Map
for each unique tag annotation name discovered through reflection. The mapped value for each tag name key will contain
the test method name, as provided via the testNames
method.
In addition to test methods annotations, this trait's implementation will also auto-tag test methods with class level annotations. For example, if you annotate @Ignore at the class level, all test methods in the class will be auto-annotated with @Ignore.
Subclasses may override this method to define and/or discover tags in a custom manner, but overriding method implementations
should never return an empty Set
as a value. If a tag has no tests, its name should not appear as a key in the
returned Map
.
Provides a TestData
instance for the passed test name, given the passed config map.
Provides a TestData
instance for the passed test name, given the passed config map.
This method is used to obtain a TestData
instance to pass to withFixture(NoArgTest)
and withFixture(OneArgTest)
and the beforeEach
and afterEach
methods
of trait BeforeAndAfterEach
.
the name of the test for which to return a TestData
instance
the config map to include in the returned TestData
a TestData
instance for the specified test, which includes the specified config map
A Set
of test names.
A Set
of test names. If this Suite
contains no tests, this method returns an empty Set
.
Suite
has been deprecated as a style trait. During the deprecation period, the following behavior will continue
to work as before, but will go away at the conclusion of the deprecation period:
This trait's implementation of this method uses Java reflection to discover all public methods whose name starts with "test"
,
which take either nothing or a single Informer
as parameters. For each discovered test method, it assigns a test name
comprised of just the method name if the method takes no parameters, or the method name plus (Informer)
if the
method takes a Informer
. Here are a few method signatures and the names that this trait's implementation assigns them:
def testCat() {} // test name: "testCat" def testCat(Informer) {} // test name: "testCat(Informer)" def testDog() {} // test name: "testDog" def testDog(Informer) {} // test name: "testDog(Informer)" def test() {} // test name: "test" def test(Informer) {} // test name: "test(Informer)"
This trait's implementation of this method returns an immutable Set
of all such names, excluding the name
testNames
. The iterator obtained by invoking elements
on this
returned Set
will produce the test names in their natural order, as determined by String
's
compareTo
method.
This trait's implementation of runTests
invokes this method
and calls runTest
for each test name in the order they appear in the returned Set
's iterator.
Although this trait's implementation of this method returns a Set
whose iterator produces String
test names in a well-defined order, the contract of this method does not required a defined order. Subclasses are free to
override this method and return test names in an undefined order, or in a defined order that's different from String
's
natural order.
Subclasses may override this method to produce test names in a custom manner. One potential reason to override testNames
is
to run tests in a different order, for example, to ensure that tests that depend on other tests are run after those other tests.
Another potential reason to override is allow tests to be defined in a different manner, such as methods annotated @Test
annotations
(as is done in JUnitSuite
and TestNGSuite
) or test functions registered during construction (as is
done in FunSuite
and FunSpec
).
In ScalaTest's event model, a test may be surrounded by “scopes.” Each test and scope is associated with string of text. A test's name is concatenation of the text of any surrounding scopes followed by the text provided with the test itself, after each text element has been trimmed and one space inserted between each component. Here's an example:
package org.scalatest.examples.freespec
import org.scalatest.FreeSpec
class SetSpec extends FreeSpec {
"A Set" - { "when empty" - { "should have size 0" in { assert(Set.empty.size === 0) }
"should produce NoSuchElementException when head is invoked" in { intercept[NoSuchElementException] { Set.empty.head } } } } }
The above FreeSpec
contains two tests, both nested inside the same two scopes. The outermost scope names
the subject, A Set
. The nested scope qualifies the subject with when empty
. Inside that
scope are the two tests. The text of the tests are:
should have size 0
should produce NoSuchElementException when head is invoked
Therefore, the names of these two tests are:
A Stack when empty should have size 0
A Stack when empty should produce NoSuchElementException when head is invoked
Note that because the component scope and test text strings are trimmed, any leading or trailing space will be dropped
before they are strung together to form the test name, with each trimmed component separated by a space. If the scopes
in the above example had text " A Set "
and " when empty "
, and the first test had text
" should have size 0 "
, its test name would still be the same, "A Set when empty should have size 0".
Executes the block of code passed as the second parameter, and, if it
completes abruptly with a ModifiableMessage
exception,
prepends the "clue" string passed as the first parameter to the beginning of the detail message
of that thrown exception, then rethrows it.
Executes the block of code passed as the second parameter, and, if it
completes abruptly with a ModifiableMessage
exception,
prepends the "clue" string passed as the first parameter to the beginning of the detail message
of that thrown exception, then rethrows it. If clue does not end in a white space
character, one space will be added
between it and the existing detail message (unless the detail message is
not defined).
This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:
withClue("(Employee's name was: " + employee.name + ")") { intercept[IllegalArgumentException] { employee.getTask(-1) } }
If an invocation of intercept
completed abruptly with an exception, the resulting message would be something like:
(Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
Throws UnsupportedOperationException
, because this method is unused by this
class, given this class's run
method delegates to JUnit to run
its tests.
Throws UnsupportedOperationException
, because this method is unused by this
class, given this class's run
method delegates to JUnit to run
its tests.
The main purpose of this method implementation is to render a compiler error an attempt
to mix in a trait that overrides withFixture
. Because this
trait does not actually use withFixture
, the attempt to mix
in behavior would very likely not work.
the no-arg test function to run with a fixture
This expect
method has been deprecated; Please use expectResult
instead.
This expect
method has been deprecated; Please use expectResult
instead.
To get rid of the deprecation warning, simply replace expect
with
expectResult
. The name expect
will be used for a different purposes in
a future version of ScalaTest.
This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of expectResult instead.
This expect
method has been deprecated; Please use expectResult
instead.
This expect
method has been deprecated; Please use expectResult
instead.
To get rid of the deprecation warning, simply replace expect
with
expectResult
. The name expect
will be used for a different purposes in
a future version of ScalaTest.
This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of expectResult instead.
Suite that wraps existing TestNG test suites, described by TestNG XML config files. This class allows existing TestNG tests written in Java to be run by ScalaTest.
One way to use this class is to extend it and provide a list of one or more names of TestNG XML config file names to run. Here's an example:
You can also specify TestNG XML config files on
Runner
's command line with-t
parameters. See the documentation forRunner
for more information.To execute
TestNGWrapperSuite
s with ScalaTest'sRunner
, you must include TestNG's jar file on the class path or runpath. This version ofTestNGSuite
was tested with TestNG version 6.3.1.