Assert that an Option[String]
is None
.
Assert that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestFailedException
with the String
value of the Some
included in the TestFailedException
's
detail message.
This form of assert
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assert(a === b)
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
Assert that an Option[String]
is None
.
Assert that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestFailedException
with the String
value of the Some
, as well as the
String
obtained by invoking toString
on the
specified clue
,
included in the TestFailedException
's detail message.
This form of assert
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assert(a === b, "extra info reported if assertion fails")
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
An objects whose toString
method returns a message to include in a failure report.
Assert that a boolean condition, described in String
message
, is true.
Assert that a boolean condition, described in String
message
, is true.
If the condition is true
, this method returns normally.
Else, it throws TestFailedException
with the
String
obtained by invoking toString
on the
specified clue
as the exception's detail message.
the boolean condition to assert
An objects whose toString
method returns a message to include in a failure report.
Assert that a boolean condition is true.
Assert that a boolean condition is true.
If the condition is true
, this method returns normally.
Else, it throws TestFailedException
.
the boolean condition to assert
Assume that an Option[String]
is None
.
Assume that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestCanceledException
with the String
value of the Some
included in the TestCanceledException
's
detail message.
This form of assume
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assert(a === b)
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
Assume that an Option[String]
is None
.
Assume that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestCanceledException
with the String
value of the Some
, as well as the
String
obtained by invoking toString
on the
specified clue
,
included in the TestCanceledException
's detail message.
This form of assume
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assume(a === b, "extra info reported if assertion fails")
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
An objects whose toString
method returns a message to include in a failure report.
Assume that a boolean condition, described in String
message
, is true.
Assume that a boolean condition, described in String
message
, is true.
If the condition is true
, this method returns normally.
Else, it throws TestCanceledException
with the
String
obtained by invoking toString
on the
specified clue
as the exception's detail message.
the boolean condition to assume
An objects whose toString
method returns a message to include in a failure report.
Assume that a boolean condition is true.
Assume that a boolean condition is true.
If the condition is true
, this method returns normally.
Else, it throws TestCanceledException
.
the boolean condition to assert
Throws TestCanceledException
, with the passed
Throwable
cause, to indicate a test failed.
Throws TestCanceledException
, with the passed
Throwable
cause, to indicate a test failed.
The getMessage
method of the thrown TestCanceledException
will return cause.toString
.
a Throwable
that indicates the cause of the cancellation.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
A message describing the failure.
A Throwable
that indicates the cause of the failure.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message, to indicate a test was canceled.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message, to indicate a test was canceled.
A message describing the cancellation.
Throws TestCanceledException
to indicate a test was canceled.
Throws TestCanceledException
to indicate a test was canceled.
Implicit conversion from Any
to Equalizer
, used to enable
assertions with ===
comparisons.
Implicit conversion from Any
to Equalizer
, used to enable
assertions with ===
comparisons.
For more information on this mechanism, see the documentation for Equalizer.
Because trait Suite
mixes in Assertions
, this implicit conversion will always be
available by default in ScalaTest Suite
s. This is the only implicit conversion that is in scope by default in every
ScalaTest Suite
. Other implicit conversions offered by ScalaTest, such as those that support the matchers DSL
or invokePrivate
, must be explicitly invited into your test code, either by mixing in a trait or importing the
members of its companion object. The reason ScalaTest requires you to invite in implicit conversions (with the exception of the
implicit conversion for ===
operator) is because if one of ScalaTest's implicit conversions clashes with an
implicit conversion used in the code you are trying to test, your program won't compile. Thus there is a chance that if you
are ever trying to use a library or test some code that also offers an implicit conversion involving a ===
operator,
you could run into the problem of a compiler error due to an ambiguous implicit conversion. If that happens, you can turn off
the implicit conversion offered by this convertToEqualizer
method simply by overriding the method in your
Suite
subclass, but not marking it as implicit:
// In your Suite subclass override def convertToEqualizer(left: Any) = new Equalizer(left)
the object whose type to convert to Equalizer
.
Executes this Suite
, printing results to the standard output.
Executes this Suite
, printing results to the standard output.
This method, which simply invokes the other overloaded form of execute
with default parameter values,
is intended for use only as a mini-DSL for the Scala interpreter. It allows you to execute a Suite
in the
interpreter with a minimum of finger typing:
scala> new SetSpec execute An empty Set - should have size 0 - should produce NoSuchElementException when head is invoked !!! IGNORED !!!
If you do ever want to invoke execute
outside the Scala interpreter, it is best style to invoke it with
empty parens to indicate it has a side effect, like this:
// Use empty parens form in regular code (outside the Scala interpreter) (new ExampleSuite).execute()
Executes one or more tests in this Suite
, printing results to the standard output.
Executes one or more tests in this Suite
, printing results to the standard output.
This method invokes run
on itself, passing in values that can be configured via the parameters to this
method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter.
Here's a summary of this method's parameters and how you can use them:
The testName
parameter
If you leave testName
at its default value (of null
), this method will pass None
to
the testName
parameter of run
, and as a result all the tests in this suite will be executed. If you
specify a testName
, this method will pass Some(testName)
to run
, and only that test
will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:
scala> new ExampleSuite execute
(The above syntax actually invokes the overloaded parameterless form of execute
, which calls this form with its default parameter values.)
To run just the test named "my favorite test"
in a suite from the Scala interpreter, you would write:
scala> new ExampleSuite execute ("my favorite test")
Or:
scala> new ExampleSuite execute (testName = "my favorite test")
The configMap
parameter
If you provide a value for the configMap
parameter, this method will pass it to run
. If not, the default value
of an empty Map
will be passed. For more information on how to use a config map to configure your test suites, see
the config map section in the main documentation for this trait. Here's an example in which you configure
a run with the name of an input file:
scala> new ExampleSuite execute (configMap = Map("inputFileName" -> "in.txt")
The color
parameter
If you leave the color
parameter unspecified, this method will configure the reporter it passes to run
to print
to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color
, like this:
scala> new ExampleSuite execute (color = false)
The durations
parameter
If you leave the durations
parameter unspecified, this method will configure the reporter it passes to run
to
not print durations for tests and suites to the standard output. If you want durations printed, specify true for durations
,
like this:
scala> new ExampleSuite execute (durations = true)
The shortstacks
and fullstacks
parameters
If you leave both the shortstacks
and fullstacks
parameters unspecified, this method will configure the reporter
it passes to run
to not print stack traces for failed tests if it has a stack depth that identifies the offending
line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true for
shortstacks
:
scala> new ExampleSuite execute (shortstacks = true)
For full stack traces, set fullstacks
to true:
scala> new ExampleSuite execute (fullstacks = true)
If you specify true for both shortstacks
and fullstacks
, you'll get full stack traces.
The stats
parameter
If you leave the stats
parameter unspecified, this method will not fire RunStarting
and either RunCompleted
or RunAborted
events to the reporter it passes to run
.
If you specify true for stats
, this method will fire the run events to the reporter, and the reporter will print the
expected test count before the run, and various statistics after, including the number of suites completed and number of tests that
succeeded, failed, were ignored or marked pending. Here's how you get the stats:
scala> new ExampleSuite execute (stats = true)
To summarize, this method will pass to run
:
testName
- None
if this method's testName
parameter is left at its default value of null
, else Some(testName)
.reporter
- a reporter that prints to the standard outputstopper
- a Stopper
whose apply
method always returns false
filter
- a Filter
constructed with None
for tagsToInclude
and Set()
for tagsToExclude
configMap
- the configMap
passed to this methoddistributor
- None
tracker
- a new Tracker
Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and
can be used interchangably. The reason this method isn't named run
is that it takes advantage of
default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run
,
this method would have the same name but different arguments than the main run
method that
takes seven arguments. Thus it would overload and couldn't be used with default argument values.)
Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName
is null
.
Normally in Scala the type of testName
would be Option[String]
and the default value would
be None
, as it is in this trait's run
method. The null
value is used here for two reasons. First, in
ScalaTest 1.5, execute
was changed from four overloaded methods to one method with default values, taking advantage of
the default and named parameters feature introduced in Scala 2.8.
To not break existing source code, testName
needed to have type String
, as it did in two of the overloaded
execute
methods prior to 1.5. The other reason is that execute
has always been designed to be called primarily
from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king.
A String
type with a null
default value lets users type suite.execute("my test name")
rather than
suite.execute(Some("my test name"))
, saving several keystrokes.
The second non-idiomatic feature is that shortstacks
and fullstacks
are all lower case rather than
camel case. This is done to be consistent with the Shell
, which also uses those forms. The reason
lower case is used in the Shell
is to save keystrokes in an interpreter environment. Most Unix commands, for
example, are all lower case, making them easier and quicker to type. In the ScalaTest
Shell
, methods like shortstacks
, fullstacks
, and nostats
, etc., are
designed to be all lower case so they feel more like shell commands than methods.
the name of one test to run.
a Map
of key-value pairs that can be used by the executing Suite
of tests.
a boolean that configures whether output is printed in color
a boolean that configures whether test and suite durations are printed to the standard output
a boolean that configures whether short stack traces should be printed for test failures
a boolean that configures whether full stack traces should be printed for test failures
a boolean that configures whether test and suite statistics are printed to the standard output
Expect that the value passed as expected
equals the value passed as actual
.
Expect that the value passed as expected
equals the value passed as actual
.
If the actual
value equals the expected
value
(as determined by ==
), expectResult
returns
normally. Else, expect
throws a
TestFailedException
whose detail message includes the expected and actual values.
the expected value
the actual value, which should equal the passed expected
value
Expect that the value passed as expected
equals the value passed as actual
.
Expect that the value passed as expected
equals the value passed as actual
.
If the actual
equals the expected
(as determined by ==
), expectResult
returns
normally. Else, if actual
is not equal to expected
, expectResult
throws a
TestFailedException
whose detail message includes the expected and actual values, as well as the String
obtained by invoking toString
on the passed clue
.
the expected value
An object whose toString
method returns a message to include in a failure report.
the actual value, which should equal the passed expected
value
The total number of tests that are expected to run when this Suite
's run
method is invoked.
The total number of tests that are expected to run when this Suite
's run
method is invoked.
This trait's implementation of this method returns the sum of:
testNames
List
, minus the number of tests marked as ignored and
any tests that are exluded by the passed Filter
expectedTestCount
on every nested Suite
contained in
nestedSuites
a Filter
with which to filter tests to count based on their tags
Throws TestFailedException
, with the passed
Throwable
cause, to indicate a test failed.
Throws TestFailedException
, with the passed
Throwable
cause, to indicate a test failed.
The getMessage
method of the thrown TestFailedException
will return cause.toString
.
a Throwable
that indicates the cause of the failure.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
A message describing the failure.
A Throwable
that indicates the cause of the failure.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message, to indicate a test failed.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message, to indicate a test failed.
A message describing the failure.
Throws TestFailedException
to indicate a test failed.
Throws TestFailedException
to indicate a test failed.
Register a test to ignore, which has the specified name, optional tags, and function value that takes no arguments.
Register a test to ignore, which has the specified name, optional tags, and function value that takes no arguments.
This method will register the test for later ignoring via an invocation of one of the run
methods. This method exists to make it easy to ignore an existing test by changing the call to test
to ignore
without deleting or commenting out the actual test code. The test will not be run, but a
report will be sent that indicates the test was ignored. The passed test name must not have been registered previously on
this FunSuite
instance.
the name of the test
the optional list of tags for this test
the test function
Returns an Informer
that during test execution will forward strings passed to its
apply
method to the current reporter.
Returns an Informer
that during test execution will forward strings passed to its
apply
method to the current reporter. If invoked in a constructor, it
will register the passed string for forwarding later during test execution. If invoked while this
FunSuite
is being executed, such as from inside a test function, it will forward the information to
the current reporter immediately. If invoked at any other time, it will
throw an exception. This method can be called safely by any thread.
Intercept and return an exception that's expected to be thrown by the passed function value.
Intercept and return an exception that's expected to
be thrown by the passed function value. The thrown exception must be an instance of the
type specified by the type parameter of this method. This method invokes the passed
function. If the function throws an exception that's an instance of the specified type,
this method returns that exception. Else, whether the passed function returns normally
or completes abruptly with a different exception, this method throws TestFailedException
.
Note that the type specified as this method's type parameter may represent any subtype of
AnyRef
, not just Throwable
or one of its subclasses. In
Scala, exceptions can be caught based on traits they implement, so it may at times make sense
to specify a trait that the intercepted exception's class must mix in. If a class instance is
passed for a type that could not possibly be used to catch an exception (such as String
,
for example), this method will complete abruptly with a TestFailedException
.
the function value that should throw the expected exception
an implicit Manifest
representing the type of the specified
type parameter.
the intercepted exception, if it is of the expected type
Returns a Documenter
that during test execution will forward strings passed to its
apply
method to the current reporter.
Returns a Documenter
that during test execution will forward strings passed to its
apply
method to the current reporter. If invoked in a constructor, it
will register the passed string for forwarding later during test execution. If invoked while this
FunSuite
is being executed, such as from inside a test function, it will forward the information to
the current reporter immediately. If invoked at any other time, it will
throw an exception. This method can be called safely by any thread.
An immutable IndexedSeq
of this Suite
object's nested Suite
s.
An immutable IndexedSeq
of this Suite
object's nested Suite
s. If this Suite
contains no nested Suite
s,
this method returns an empty IndexedSeq
. This trait's implementation of this method returns an empty List
.
Throws TestPendingException
to indicate a test is pending.
Throws TestPendingException
to indicate a test is pending.
A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.
To support this style of testing, a test can be given a name that specifies one
bit of behavior required by the system being tested. The test can also include some code that
sends more information about the behavior to the reporter when the tests run. At the end of the test,
it can call method pending
, which will cause it to complete abruptly with TestPendingException
.
Because tests in ScalaTest can be designated as pending with TestPendingException
, both the test name and any information
sent to the reporter when running the test can appear in the report of a test run. (In other words,
the code of a pending test is executed just like any other test.) However, because the test completes abruptly
with TestPendingException
, the test will be reported as pending, to indicate
the actual test, and possibly the functionality it is intended to test, has not yet been implemented.
Note: This method always completes abruptly with a TestPendingException
. Thus it always has a side
effect. Methods with side effects are usually invoked with parentheses, as in pending()
. This
method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it
forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite
or FunSpec
to be denoted by placing "(pending)
" after the test name, as in:
test("that style rules are not laws") (pending)
Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate
it is pending. Whereas "(pending())
looks more like a method call, "(pending)
" lets readers
stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.
Execute the passed block of code, and if it completes abruptly, throw TestPendingException
, else
throw TestFailedException
.
Execute the passed block of code, and if it completes abruptly, throw TestPendingException
, else
throw TestFailedException
.
This method can be used to temporarily change a failing test into a pending test in such a way that it will
automatically turn back into a failing test once the problem originally causing the test to fail has been fixed.
At that point, you need only remove the pendingUntilFixed
call. In other words, a
pendingUntilFixed
surrounding a block of code that isn't broken is treated as a test failure.
The motivation for this behavior is to encourage people to remove pendingUntilFixed
calls when
there are no longer needed.
This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may
encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this
case you can mark the bit of test code causing the failure with pendingUntilFixed
. You can then write more
tests and functionality that eventually will get your production code to a point where the original test won't fail anymore.
At this point the code block marked with pendingUntilFixed
will no longer throw an exception (because the
problem has been fixed). This will in turn cause pendingUntilFixed
to throw TestFailedException
with a detail message explaining you need to go back and remove the pendingUntilFixed
call as the problem orginally
causing your test code to fail has been fixed.
a block of code, which if it completes abruptly, should trigger a TestPendingException
The fully qualified class name of the rerunner to rerun this suite.
The fully qualified class name of the rerunner to rerun this suite. This implementation will look at this.getClass and see if it is either an accessible Suite, or it has a WrapWith annotation. If so, it returns the fully qualified class name wrapped in a Some, or else it returns None.
Runs this suite of tests.
Runs this suite of tests.
If testName
is None
, this trait's implementation of this method
calls these two methods on this object in this order:
runNestedSuites(report, stopper, tagsToInclude, tagsToExclude, configMap, distributor)
runTests(testName, report, stopper, tagsToInclude, tagsToExclude, configMap)
If testName
is defined, then this trait's implementation of this method
calls runTests
, but does not call runNestedSuites
. This behavior
is part of the contract of this method. Subclasses that override run
must take
care not to call runNestedSuites
if testName
is defined. (The
OneInstancePerTest
trait depends on this behavior, for example.)
Subclasses and subtraits that override this run
method can implement them without
invoking either the runTests
or runNestedSuites
methods, which
are invoked by this trait's implementation of this method. It is recommended, but not required,
that subclasses and subtraits that override run
in a way that does not
invoke runNestedSuites
also override runNestedSuites
and make it
final. Similarly it is recommended, but not required,
that subclasses and subtraits that override run
in a way that does not
invoke runTests
also override runTests
(and runTest
,
which this trait's implementation of runTests
calls) and make it
final. The implementation of these final methods can either invoke the superclass implementation
of the method, or throw an UnsupportedOperationException
if appropriate. The
reason for this recommendation is that ScalaTest includes several traits that override
these methods to allow behavior to be mixed into a Suite
. For example, trait
BeforeAndAfterEach
overrides runTests
s. In a Suite
subclass that no longer invokes runTests
from run
, the
BeforeAndAfterEach
trait is not applicable. Mixing it in would have no effect.
By making runTests
final in such a Suite
subtrait, you make
the attempt to mix BeforeAndAfterEach
into a subclass of your subtrait
a compiler error. (It would fail to compile with a complaint that BeforeAndAfterEach
is trying to override runTests
, which is a final method in your trait.)
an optional name of one test to run. If None
, all relevant tests should be run.
I.e., None
acts like a wildcard that means run all relevant tests in this Suite
.
the Args
for this run
a Status
object that indicates when all tests and nested suites started by this method have completed, and whether or not a failure occurred.
This overloaded form of run
has been deprecated and will be removed in a future
version of ScalaTest. Please use the run
method that takes two parameters instead.
This overloaded form of run
has been deprecated and will be removed in a future
version of ScalaTest. Please use the run
method that takes two parameters instead.
This final implementation of this method constructs a Args
instance from the passed
reporter
, stopper
, filter
, configMap
, distributor
,
and tracker
, and invokes the overloaded run
method that takes two parameters,
passing in the specified testName
and the newly constructed Args
. This method
implementation enables existing code that called into the old run
method to continue to work
during the deprecation cycle. Subclasses and subtraits that overrode this method, however, will need to
be changed to use the new two-parameter form instead.
an optional name of one test to execute. If None
, all relevant tests should be executed.
I.e., None
acts like a wildcard that means execute all relevant tests in this Suite
.
the Reporter
to which results will be reported
the Stopper
that will be consulted to determine whether to stop execution early.
a Filter
with which to filter tests based on their tags
a Map
of key-value pairs that can be used by the executing Suite
of tests.
an optional Distributor
, into which to put nested Suite
s to be executed
by another entity, such as concurrently by a pool of threads. If None
, nested Suite
s will be executed sequentially.
a Tracker
tracking Ordinal
s being fired by the current thread.
Run zero to many of this Suite
's nested Suite
s.
Run zero to many of this Suite
's nested Suite
s.
If the passed distributor
is None
, this trait's
implementation of this method invokes run
on each
nested Suite
in the List
obtained by invoking nestedSuites
.
If a nested Suite
's run
method completes abruptly with an exception, this trait's implementation of this
method reports that the Suite
aborted and attempts to run the
next nested Suite
.
If the passed distributor
is defined, this trait's implementation
puts each nested Suite
into the Distributor
contained in the Some
, in the order in which the
Suite
s appear in the List
returned by nestedSuites
, passing
in a new Tracker
obtained by invoking nextTracker
on the Tracker
passed to this method.
Implementations of this method are responsible for ensuring SuiteStarting
events
are fired to the Reporter
before executing any nested Suite
, and either SuiteCompleted
or SuiteAborted
after executing any nested Suite
.
the Args
for this run
a Status
object that indicates when all nested suites started by this method have completed, and whether or not a failure occurred.
Run a test.
Run a test. This trait's implementation runs the test registered with the name specified by testName
.
the name of one test to run.
the Args
for this run
a Status
object that indicates when the test started by this method has completed, and whether or not it failed .
Run zero to many of this FunSuite
's tests.
Run zero to many of this FunSuite
's tests.
an optional name of one test to run. If None
, all relevant tests should be run.
I.e., None
acts like a wildcard that means run all relevant tests in this Suite
.
the Args
for this run
a Status
object that indicates when all tests started by this method have completed, and whether or not a failure occurred.
Suite style name.
Suite style name.
A string ID for this Suite
that is intended to be unique among all suites reported during a run.
A string ID for this Suite
that is intended to be unique among all suites reported during a run.
This trait's
implementation of this method returns the fully qualified name of this object's class.
Each suite reported during a run will commonly be an instance of a different Suite
class,
and in such cases, this default implementation of this method will suffice. However, in special cases
you may need to override this method to ensure it is unique for each reported suite. For example, if you write
a Suite
subclass that reads in a file whose name is passed to its constructor and dynamically
creates a suite of tests based on the information in that file, you will likely need to override this method
in your Suite
subclass, perhaps by appending the pathname of the file to the fully qualified class name.
That way if you run a suite of tests based on a directory full of these files, you'll have unique suite IDs for
each reported suite.
The suite ID is intended to be unique, because ScalaTest does not enforce that it is unique. If it is not unique, then you may not be able to uniquely identify a particular test of a particular suite. This ability is used, for example, to dynamically tag tests as having failed in the previous run when rerunning only failed tests.
this Suite
object's ID.
A user-friendly suite name for this Suite
.
A user-friendly suite name for this Suite
.
This trait's
implementation of this method returns the simple name of this object's class. This
trait's implementation of runNestedSuites
calls this method to obtain a
name for Report
s to pass to the suiteStarting
, suiteCompleted
,
and suiteAborted
methods of the Reporter
.
this Suite
object's suite name.
A Map
whose keys are String
tag names to which tests in this FunSuite
belong, and values
the Set
of test names that belong to each tag.
A Map
whose keys are String
tag names to which tests in this FunSuite
belong, and values
the Set
of test names that belong to each tag. If this FunSuite
contains no tags, this method returns an empty Map
.
This trait's implementation returns tags that were passed as strings contained in Tag
objects passed to
methods test
and ignore
.
In addition, this trait's implementation will also auto-tag tests with class level annotations. For example, if you annotate @Ignore at the class level, all test methods in the class will be auto-annotated with @Ignore.
Register a test with the specified name, optional tags, and function value that takes no arguments.
Register a test with the specified name, optional tags, and function value that takes no arguments.
This method will register the test for later execution via an invocation of one of the run
methods. The passed test name must not have been registered previously on
this FunSuite
instance.
the name of the test
the optional list of tags for this test
the test function
Provides a TestData
instance for the passed test name, given the passed config map.
Provides a TestData
instance for the passed test name, given the passed config map.
This method is used to obtain a TestData
instance to pass to withFixture(NoArgTest)
and withFixture(OneArgTest)
and the beforeEach
and afterEach
methods
of trait BeforeAndAfterEach
.
the name of the test for which to return a TestData
instance
the config map to include in the returned TestData
a TestData
instance for the specified test, which includes the specified config map
An immutable Set
of test names.
An immutable Set
of test names. If this FunSuite
contains no tests, this method returns an empty Set
.
This trait's implementation of this method will return a set that contains the names of all registered tests. The set's iterator will return those names in the order in which the tests were registered.
Registers shared tests.
Registers shared tests.
This method enables the following syntax for shared tests in a FunSuite
:
testsFor(nonEmptyStack(lastValuePushed))
This method just provides syntax sugar intended to make the intent of the code clearer.
Because the parameter passed to it is
type Unit
, the expression will be evaluated before being passed, which
is sufficient to register the shared tests. For examples of shared tests, see the
Shared tests section in the main documentation for this trait.
Executes the block of code passed as the second parameter, and, if it
completes abruptly with a ModifiableMessage
exception,
prepends the "clue" string passed as the first parameter to the beginning of the detail message
of that thrown exception, then rethrows it.
Executes the block of code passed as the second parameter, and, if it
completes abruptly with a ModifiableMessage
exception,
prepends the "clue" string passed as the first parameter to the beginning of the detail message
of that thrown exception, then rethrows it. If clue does not end in a white space
character, one space will be added
between it and the existing detail message (unless the detail message is
not defined).
This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:
withClue("(Employee's name was: " + employee.name + ")") { intercept[IllegalArgumentException] { employee.getTask(-1) } }
If an invocation of intercept
completed abruptly with an exception, the resulting message would be something like:
(Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
Run the passed test function in the context of a fixture established by this method.
Run the passed test function in the context of a fixture established by this method.
This method should set up the fixture needed by the tests of the
current suite, invoke the test function, and if needed, perform any clean
up needed after the test completes. Because the NoArgTest
function
passed to this method takes no parameters, preparing the fixture will require
side effects, such as reassigning instance var
s in this Suite
or initializing
a globally accessible external database. If you want to avoid reassigning instance var
s
you can use fixture.Suite.
This trait's implementation of runTest
invokes this method for each test, passing
in a NoArgTest
whose apply
method will execute the code of the test.
This trait's implementation of this method simply invokes the passed NoArgTest
function.
the no-arg test function to run with a fixture
This expect
method has been deprecated; Please use expectResult
instead.
This expect
method has been deprecated; Please use expectResult
instead.
To get rid of the deprecation warning, simply replace expect
with
expectResult
. The name expect
will be used for a different purposes in
a future version of ScalaTest.
This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of expectResult instead.
This expect
method has been deprecated; Please use expectResult
instead.
This expect
method has been deprecated; Please use expectResult
instead.
To get rid of the deprecation warning, simply replace expect
with
expectResult
. The name expect
will be used for a different purposes in
a future version of ScalaTest.
This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of expectResult instead.
A suite of tests in which each test is represented as a function value. The “
Fun
” inFunSuite
stands for “function.”FunSuite
feels comfortable and familiar while still giving some benefits of BDD:FunSuite
makes it easy to write descriptive test names, natural to write focused tests, and generates specification-like output that can facilitate communication among stakeholders.Here's an example
FunSuite
:“
test
” is a method, defined inFunSuite
, which will be invoked by the primary constructor ofSetSuite
. You specify the name of the test as a string between the parentheses, and the test code itself between curly braces. The test code is a function passed as a by-name parameter totest
, which registers it for later execution.A
FunSuite
's lifecycle has two phases: the registration phase and the ready phase. It starts in registration phase and enters ready phase the first timerun
is called on it. It then remains in ready phase for the remainder of its lifetime.Tests can only be registered with the
test
method while theFunSuite
is in its registration phase. Any attempt to register a test after theFunSuite
has entered its ready phase, i.e., afterrun
has been invoked on theFunSuite
, will be met with a thrownTestRegistrationClosedException
. The recommended style of usingFunSuite
is to register tests during object construction as is done in all the examples shown here. If you keep to the recommended style, you should never see aTestRegistrationClosedException
.See also: Getting started with
FunSuite
.Note: Trait
FunSuite
was in part inspired by Rehersal, an early test framework for Scala.Ignored tests
To support the common use case of temporarily disabling a test, with the good intention of resurrecting the test at a later time,
FunSuite
provides registration methods that start withignore
instead oftest
. Here's an example: to temporarilyIf you run this version of
SetSuite
with:It will run only the second test and report that the first test was ignored:
If you wish to temporarily ignore an entire suite of tests, you can annotate the test class with
@Ignore
, like this:When you mark a test class with a tag annotation, ScalaTest will mark each test defined in that class with that tag. Thus, marking the
SetSuite
in the above example with the@Ignore
tag annotation means that both tests in the class will be ignored. If you run the aboveSetSuite
in the Scala interpreter, you'll see:Note that marking a test class as ignored won't prevent it from being discovered by ScalaTest. Ignored classes will be discovered and run, and all their tests will be reported as ignored. This is intended to keep the ignored class visible, to encourage the developers to eventually fix and “un-ignore” it. If you want to prevent a class from being discovered at all, use the
DoNotDiscover
annotation instead.Informers
One of the parameters to
FunSuite
'srun
method is aReporter
, which will collect and report information about the running suite of tests. Information about suites and tests that were run, whether tests succeeded or failed, and tests that were ignored will be passed to theReporter
as the suite runs. Most often the reporting done by default byFunSuite
's methods will be sufficient, but occasionally you may wish to provide custom information to theReporter
from a test. For this purpose, anInformer
that will forward information to the currentReporter
is provided via theinfo
parameterless method. You can pass the extra information to theInformer
via itsapply
method. TheInformer
will then pass the information to theReporter
via anInfoProvided
event. Here's an example that shows both a direct use as well as an indirect use through the methods ofGivenWhenThen
:If you run this
FunSuite
from the interpreter, you will see the following output:scala> new SetSuite execute SetSuite: - an element can be added to an empty mutable Set + Given an empty mutable Set + When an element is added + Then the Set should have size 1 + And the Set should contain the added element + That's all folks!
Pending tests
A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.
To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method
pending
, which will cause it to complete abruptly withTestPendingException
.Because tests in ScalaTest can be designated as pending with
TestPendingException
, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly withTestPendingException
, the test will be reported as pending, to indicate the actual test, and possibly the functionality, has not yet been implemented.Although pending tests may be used more often in specification-style suites, such as
org.scalatest.FunSpec
, you can also use it inFunSuite
, like this:(Note: "
(pending)
" is the body of the test. Thus the test contains just one statement, an invocation of thepending
method, which throwsTestPendingException
.) If you run this version ofSetSuite
with:It will run both tests, but report that first test is pending. You'll see:
One difference between an ignored test and a pending one is that an ignored test is intended to be used during a significant refactorings of the code under test, when tests break and you don't want to spend the time to fix all of them immediately. You can mark some of those broken tests as ignored temporarily, so that you can focus the red bar on just failing tests you actually want to fix immediately. Later you can go back and fix the ignored tests. In other words, by ignoring some failing tests temporarily, you can more easily notice failed tests that you actually want to fix. By contrast, a pending test is intended to be used before a test and/or the code under test is written. Pending indicates you've decided to write a test for a bit of behavior, but either you haven't written the test yet, or have only written part of it, or perhaps you've written the test but don't want to implement the behavior it tests until after you've implemented a different bit of behavior you realized you need first. Thus ignored tests are designed to facilitate refactoring of existing code whereas pending tests are designed to facilitate the creation of new code.
One other difference between ignored and pending tests is that ignored tests are implemented as a test tag that is excluded by default. Thus an ignored test is never executed. By contrast, a pending test is implemented as a test that throws
TestPendingException
(which is what calling thepending
method does). Thus the body of pending tests are executed up until they throwTestPendingException
. The reason for this difference is that it enables your unfinished test to sendInfoProvided
messages to the reporter before it completes abruptly withTestPendingException
, as shown in the previous example onInformer
s that used theGivenWhenThen
trait.Tagging tests
A
FunSuite
's tests may be classified into groups by tagging them with string names. As with any suite, when executing aFunSuite
, groups of tests can optionally be included and/or excluded. To tag aFunSuite
's tests, you pass objects that extend classorg.scalatest.Tag
to methods that register tests. ClassTag
takes one parameter, a string name. If you have created tag annotation interfaces as described in theTag
documentation, then you will probably want to use tag names on your test functions that match. To do so, simply pass the fully qualified names of the tag interfaces to theTag
constructor. For example, if you've defined tag annotation interfaces with fully qualified names,com.mycompany.tags.SlowTest
andcom.mycompany.tags.DbTest
, then you could create matching tags forFunSuite
s like this:Given these definitions, you could place
FunSuite
tests into groups like this:This code marks both tests with the
com.mycompany.tags.SlowTest
tag, and the second test with thecom.mycompany.tags.DbTest
tag.The
run
method takes aFilter
, whose constructor takes an optionalSet[String]
calledtagsToInclude
and aSet[String]
calledtagsToExclude
. IftagsToInclude
isNone
, all tests will be run except those those belonging to tags listed in thetagsToExclude
Set
. IftagsToInclude
is defined, only tests belonging to tags mentioned in thetagsToInclude
set, and not mentioned intagsToExclude
, will be run.It is recommended, though not required, that you create a corresponding tag annotation when you create a
Tag
object. A tag annotation allows you to tag all the tests of aFunSuite
in one stroke by annotating the class. For more information and examples, see the documentation for classTag
.Shared fixtures
A test fixture is composed of the objects and other artifacts (files, sockets, database connections, etc.) tests use to do their work. When multiple tests need to work with the same fixtures, it is important to try and avoid duplicating the fixture code across those tests. The more code duplication you have in your tests, the greater drag the tests will have on refactoring the actual production code. ScalaTest recommends several techniques to eliminate such code duplication, and provides several traits to help. Each technique is geared towards helping you reduce code duplication without introducing instance
var
s, shared mutable objects, or other dependencies between tests. Eliminating shared mutable state across tests will make your test code easier to reason about and more amenable for parallel test execution.The following sections describe these techniques, including explaining the recommended usage for each. But first, here's a table summarizing the options:
OneInstancePerTest
withFixture(NoArgTest)
withFixture(OneArgTest)
BeforeAndAfter
BeforeAndAfterEach
Calling get-fixture methods
If you need to create the same mutable fixture objects in multiple tests, and don't need to clean them up after using them, the simplest approach is to write one or more get-fixture methods. A get-fixture method returns a new instance of a needed fixture object (or an holder object containing multiple fixture objects) each time it is called. You can call a get-fixture method at the beginning of each test that needs the fixture, storing the returned object or objects in local variables. Here's an example:
The “
f.
” in front of each use of a fixture object provides a visual indication of which objects are part of the fixture, but if you prefer, you can import the the members with “import f._
” and use the names directly.If you need to configure fixture objects differently in different tests, you can pass configuration into the get-fixture method. For example, if you could pass in an initial value for a mutable fixture object as a parameter to the get-fixture method.
Instantiating fixture-context objects
An alternate technique that is especially useful when different tests need different combinations of fixture objects is to define the fixture objects as instance variables of fixture-context objects whose instantiation forms the body of tests. Like get-fixture methods, fixture-context objects are only appropriate if you don't need to clean up the fixtures after using them.
To use this technique, you define instance variables intialized with fixture objects in traits and/or classes, then in each test instantiate an object that contains just the fixture objects needed by the test. Traits allow you to mix together just the fixture objects needed by each test, whereas classes allow you to pass data in via a constructor to configure the fixture objects. Here's an example in which fixture objects are partitioned into two traits and each test just mixes together the traits it needs:
Mixing in
OneInstancePerTest
If every test method requires the same set of mutable fixture objects, and none require cleanup, one other approach you can take is make them simply
val
s and mix in traitOneInstancePerTest
. If you mix inOneInstancePerTest
, each test will be run in its own instance of theSuite
, similar to the way JUnit tests are executed. Here's an example:One way to think of
OneInstancePerTest
is that the entireSuite
instance is like a fixture-context object, but with the difference that the test code doesn't run during construction as it does with the real fixture-context object technique. Because this trait emulates JUnit's manner of running tests, this trait can be helpful when porting JUnit tests to ScalaTest. The primary intended use ofOneInstancePerTest
is to serve as a supertrait forParallelTestExecution
and the path traits, but you can also mix it in directly to help you port JUnit tests to ScalaTest or if you prefer JUnit's approach to test isolation.Overriding
withFixture(NoArgTest)
Although the get-fixture method, fixture-context object, and
OneInstancePerTest
approaches take care of setting up a fixture at the beginning of each test, they don't address the problem of cleaning up a fixture at the end of the test. If you just need to perform a side-effect at the beginning or end of a test, and don't need to actually pass any fixture objects into the test, you can overridewithFixture(NoArgTest)
, one of ScalaTest's lifecycle methods defined in traitSuite
.Trait
Suite
's implementation ofrunTest
passes a no-arg test function towithFixture(NoArgTest)
. It iswithFixture
's responsibility to invoke that test function.Suite
's implementation ofwithFixture
simply invokes the function, like this:You can, therefore, override
withFixture
to perform setup before and/or cleanup after invoking the test function. If you have cleanup to perform, you should invoke the test function inside atry
block and perform the cleanup in afinally
clause, because the exception that causes a test to fail will propagate throughwithFixture
back torunTest
. (In other words, if the test fails, the test function invoked bywithFixture
will throw an exception.)The
withFixture
method is designed to be stacked, and to enable this, you should always call thesuper
implementation ofwithFixture
, and let it invoke the test function rather than invoking the test function directly. In other words, instead of writing “test()
”, you should write “super.withFixture(test)
”, like this:Here's an example in which
withFixture(NoArgTest)
is used to take a snapshot of the working directory if a test fails, and and send that information to the reporter:Running this version of
ExampleSuite
in the interpreter in a directory with two files,hello.txt
andworld.txt
would give the following output:scala> new ExampleSuite execute ExampleSuite: - this test should succeed - this test should fail *** FAILED *** 2 did not equal 3 (<console>:33) + Dir snapshot: hello.txt, world.txt
Note that the
NoArgTest
passed towithFixture
, in addition to anapply
method that executes the test, also includes the test name and the config map passed torunTest
. Thus you can also use the test name and configuration objects in yourwithFixture
implementation.Calling loan-fixture methods
If you need to both pass a fixture object into a test and perform cleanup at the end of the test, you'll need to use the loan pattern. If different tests need different fixtures that require cleanup, you can implement the loan pattern directly by writing loan-fixture methods. A loan-fixture method takes a function whose body forms part or all of a test's code. It creates a fixture, passes it to the test code by invoking the function, then cleans up the fixture after the function returns.
The following example shows three tests that use two fixtures, a database and a file. Both require cleanup after, so each is provided via a loan-fixture method. (In this example, the database is simulated with a
StringBuffer
.)As demonstrated by the last test, loan-fixture methods compose. Not only do loan-fixture methods allow you to give each test the fixture it needs, they allow you to give a test multiple fixtures and clean everything up afterwords.
Also demonstrated in this example is the technique of giving each test its own "fixture sandbox" to play in. When your fixtures involve external side-effects, like creating files or databases, it is a good idea to give each file or database a unique name as is done in this example. This keeps tests completely isolated, allowing you to run them in parallel if desired.
Overriding
withFixture(OneArgTest)
If all or most tests need the same fixture, you can avoid some of the boilerplate of the loan-fixture method approach by using a
fixture.Suite
and overridingwithFixture(OneArgTest)
. Each test in afixture.Suite
takes a fixture as a parameter, allowing you to pass the fixture into the test. You must indicate the type of the fixture parameter by specifyingFixtureParam
, and implement awithFixture
method that takes aOneArgTest
. ThiswithFixture
method is responsible for invoking the one-arg test function, so you can perform fixture set up before, and clean up after, invoking and passing the fixture into the test function.To enable the stacking of traits that define
withFixture(NoArgTest)
, it is a good idea to letwithFixture(NoArgTest)
invoke the test function instead of invoking the test function directly. To do so, you'll need to convert theOneArgTest
to aNoArgTest
. You can do that by passing the fixture object to thetoNoArgTest
method ofOneArgTest
. In other words, instead of writing “test(theFixture)
”, you'd delegate responsibility for invoking the test function to thewithFixture(NoArgTest)
method of the same instance by writing:Here's a complete example:
In this example, the tests actually required two fixture objects, a
File
and aFileWriter
. In such situations you can simply define theFixtureParam
type to be a tuple containing the objects, or as is done in this example, a case class containing the objects. For more information on thewithFixture(OneArgTest)
technique, see the documentation forfixture.Suite
.Mixing in
BeforeAndAfter
In all the shared fixture examples shown so far, the activities of creating, setting up, and cleaning up the fixture objects have been performed during the test. This means that if an exception occurs during any of these activities, it will be reported as a test failure. Sometimes, however, you may want setup to happen before the test starts, and cleanup after the test has completed, so that if an exception occurs during setup or cleanup, the entire suite aborts and no more tests are attempted. The simplest way to accomplish this in ScalaTest is to mix in trait
BeforeAndAfter
. With this trait you can denote a bit of code to run before each test withbefore
and/or after each test each test withafter
, like this:Note that the only way
before
andafter
code can communicate with test code is via some side-effecting mechanism, commonly by reassigning instancevar
s or by changing the state of mutable objects held from instanceval
s (as in this example). If using instancevar
s or mutable objects held from instanceval
s you wouldn't be able to run tests in parallel in the same instance of the test class unless you synchronized access to the shared, mutable state. This is why ScalaTest'sParallelTestExecution
trait extendsOneInstancePerTest
. By running each test in its own instance of the class, each test has its own copy of the instance variables, so you don't need to synchronize. If you mixedParallelTestExecution
into theExampleSuite
above, the tests would run in parallel just fine without any synchronization needed on the mutableStringBuilder
andListBuffer[String]
objects.Although
BeforeAndAfter
provides a minimal-boilerplate way to execute code before and after tests, it isn't designed to enable stackable traits, because the order of execution would be non-obvious. If you want to factor out before and after code that is common to multiple test suites, you should use traitBeforeAndAfterEach
instead, as shown later in the next section, composing fixtures by stacking traits.Composing fixtures by stacking traits
In larger projects, teams often end up with several different fixtures that test classes need in different combinations, and possibly initialized (and cleaned up) in different orders. A good way to accomplish this in ScalaTest is to factor the individual fixtures into traits that can be composed using the stackable trait pattern. This can be done, for example, by placing
withFixture
methods in several traits, each of which callsuper.withFixture
. Here's an example in which theStringBuilder
andListBuffer[String]
fixtures used in the previous examples have been factored out into two stackable fixture traits namedBuilder
andBuffer
:By mixing in both the
Builder
andBuffer
traits,ExampleSuite
gets both fixtures, which will be initialized before each test and cleaned up after. The order the traits are mixed together determines the order of execution. In this case,Builder
is “super” toBuffer
. If you wantedBuffer
to be “super” toBuilder
, you need only switch the order you mix them together, like this:And if you only need one fixture you mix in only that trait:
Another way to create stackable fixture traits is by extending the
BeforeAndAfterEach
and/orBeforeAndAfterAll
traits.BeforeAndAfterEach
has abeforeEach
method that will be run before each test (like JUnit'ssetUp
), and anafterEach
method that will be run after (like JUnit'stearDown
). Similarly,BeforeAndAfterAll
has abeforeAll
method that will be run before all tests, and anafterAll
method that will be run after all tests. Here's what the previously shown example would look like if it were rewritten to use theBeforeAndAfterEach
methods instead ofwithFixture
:To get the same ordering as
withFixture
, place yoursuper.beforeEach
call at the end of eachbeforeEach
method, and thesuper.afterEach
call at the beginning of eachafterEach
method, as shown in the previous example. It is a good idea to invokesuper.afterEach
in atry
block and perform cleanup in afinally
clause, as shown in the previous example, because this ensures the cleanup code is performed even ifsuper.afterEach
throws an exception.The difference between stacking traits that extend
BeforeAndAfterEach
versus traits that implementwithFixture
is that setup and cleanup code happens before and after the test inBeforeAndAfterEach
, but at the beginning and end of the test inwithFixture
. Thus if awithFixture
method completes abruptly with an exception, it is considered a failed test. By contrast, if any of thebeforeEach
orafterEach
methods ofBeforeAndAfterEach
complete abruptly, it is considered an aborted suite, which will result in aSuiteAborted
event.Shared tests
Sometimes you may want to run the same test code on different fixture objects. In other words, you may want to write tests that are "shared" by different fixture objects. To accomplish this in a
FunSuite
, you first place shared tests in behavior functions. These behavior functions will be invoked during the construction phase of anyFunSuite
that uses them, so that the tests they contain will be registered as tests in thatFunSuite
. For example, given this stack class:You may want to test the
Stack
class in different states: empty, full, with one item, with one item less than capacity, etc. You may find you have several tests that make sense any time the stack is non-empty. Thus you'd ideally want to run those same tests for three stack fixture objects: a full stack, a stack with a one item, and a stack with one item less than capacity. With shared tests, you can factor these tests out into a behavior function, into which you pass the stack fixture to use when running the tests. So in yourFunSuite
for stack, you'd invoke the behavior function three times, passing in each of the three stack fixtures so that the shared tests are run for all three fixtures.You can define a behavior function that encapsulates these shared tests inside the
FunSuite
that uses them. If they are shared between differentFunSuite
s, however, you could also define them in a separate trait that is mixed into eachFunSuite
that uses them. For example, here thenonEmptyStack
behavior function (in this case, a behavior method) is defined in a trait along with another method containing shared tests for non-full stacks:Given these behavior functions, you could invoke them directly, but
FunSuite
offers a DSL for the purpose, which looks like this:If you prefer to use an imperative style to change fixtures, for example by mixing in
BeforeAndAfterEach
and reassigning astack
var
inbeforeEach
, you could write your behavior functions in the context of thatvar
, which means you wouldn't need to pass in the stack fixture because it would be in scope already inside the behavior function. In that case, your code would look like this:testsFor(nonEmptyStack) // assuming lastValuePushed is also in scope inside nonEmptyStack testsFor(nonFullStack)
The recommended style, however, is the functional, pass-all-the-needed-values-in style. Here's an example:
If you load these classes into the Scala interpreter (with scalatest's JAR file on the class path), and execute it, you'll see:
scala> new StackFunSuite execute StackFunSuite: - empty is invoked on an empty stack - peek is invoked on an empty stack - pop is invoked on an empty stack - empty is invoked on this non-empty stack: Stack(9) - peek is invoked on this non-empty stack: Stack(9) - pop is invoked on this non-empty stack: Stack(9) - full is invoked on this non-full stack: Stack(9) - push is invoked on this non-full stack: Stack(9) - empty is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1) - peek is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1) - pop is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1) - full is invoked on this non-full stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1) - push is invoked on this non-full stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1) - full is invoked on a full stack - empty is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1, 0) - peek is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1, 0) - pop is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1, 0) - push is invoked on a full stack
One thing to keep in mind when using shared tests is that in ScalaTest, each test in a suite must have a unique name. If you register the same tests repeatedly in the same suite, one problem you may encounter is an exception at runtime complaining that multiple tests are being registered with the same test name. In a
FunSuite
there is no nesting construct analogous toFunSpec
'sdescribe
clause. Therefore, you need to do a bit of extra work to ensure that the test names are unique. If a duplicate test name problem shows up in aFunSuite
, you'll need to pass in a prefix or suffix string to add to each test name. You can pass this string the same way you pass any other data needed by the shared tests, or just calltoString
on the shared fixture object. This is the approach taken by the previousFunSuiteStackBehaviors
example.Given this
FunSuiteStackBehaviors
trait, calling it with thestackWithOneItem
fixture, like this:yields test names:
empty is invoked on this non-empty stack: Stack(9)
peek is invoked on this non-empty stack: Stack(9)
pop is invoked on this non-empty stack: Stack(9)
Whereas calling it with the
stackWithOneItemLessThanCapacity
fixture, like this:yields different test names:
empty is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
peek is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)
pop is invoked on this non-empty stack: Stack(9, 8, 7, 6, 5, 4, 3, 2, 1)