
Actors in Scala
PrePrint™ Edition

Excerpt

artima
ARTIMA PRESS

MOUNTAIN VIEW, CALIFORNIA

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Excerpt from Actors In Scala

Chapter 1

Concurrency Everywhere

The actor model of concurrency was born of a practical need: When Carl
Hewitt and his team at MIT first described actors in the 1970s, computers
were relatively slow.1 While it was already possible to divide up work among
several computers and to compute in parallel, Hewitt’s team wanted a model
that would not only simplify building such concurrent systems, but would
also let them reason about concurrent programs in general. Such reasoning, it
was believed, would allow developers to be more certain that their concurrent
programs worked as intended.

Although actor-based concurrency has been an important concept ever
since, it is only now gaining wide-spread acceptance. That is in part because
until recently no widely used programming language offered first-class sup-
port for actors. An effective actors implementation places a great burden on
a host language, and few mainstream languages were up to the task. Scala
rises to that challenge, and offers a full-featured implementation of actor-
based concurrency on the Java virtual machine (JVM).2 Because Scala code
seamlessly interoperates with code and libraries written in Java, or any other
JVM language, Scala actors offer an exciting and practical way to build scal-
able and reliable concurrent programs.

Like many powerful concepts, the actor model can be understood and
used on several levels. On one level, actor-based programming provides an
easy way to exchange messages between independently running threads or
processes. On another level, actors make concurrent programming gener-

1Hewitt et al., A Universal Modular ACTOR Formalism for Artificial Intelligence [?]
2Haller and Odersky, Scala Actors: Unifying thread-based and event-based program-

ming [?]

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 3

ally simpler, because actors let developers focus on high-level concurrency
abstractions and shield programmers from intricacies that can easily lead to
errors. On an even broader level, actors are about building reliable programs
in a world where concurrency is the norm, not the exception—a world that
is fast approaching.

This book aims to explain actor-based programming with Scala on all
those levels. Before diving into the details of Scala actors, it helps to take a
step back and place actors in the context of other approaches to concurrent
programming, some of which may already be familiar to you.

1.1 Scaling with concurrency

The mainstream computing architectures of the past decades focused on
making the execution of a single thread of sequential instructions faster. That
led to an application of Moore’s Law to computing performance: Processor
performance per unit cost has doubled roughly every eighteen months for the
last twenty years, and developers counted on that trend to ensure that their
increasingly complex programs performed well.3

Moore’s Law has been remarkably accurate in predicting processor per-
formance, and it is reasonable to expect processor computing capacity to
double every one-and-a-half years for at least another decade. To make that
increase practical, however, chip designers had to implement a major shift
in their design focus in recent years. Instead of trying to improve the clock
cycles dedicated to executing a single thread of instructions, new processor
designs make it possible to execute many concurrent instruction threads on
a single chip. While the clock speed of each computing core on a chip is ex-
pected to improve only marginally over the next few years, processors with
dozens of cores are already showing up in commodity servers, and multicore
chips are the norm even in inexpensive desktops and notebooks.

This shift in the design of high-volume, commodity processor architec-
tures, such as the Intel x86, has at least two ramifications for developers.
First, because individual core clock cycles will increase only modestly, we
will need to pay renewed attention to the algorithmic efficiency of sequential
code. Second, and more important in the context of actors, we will need to
design programs such that they take maximum advantage of available pro-
cessor cores. In other words, we not only need to write programs that work

3Sutter, The free lunch is over: A fundamental turn toward concurrency [?]

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 4

correctly on concurrent hardware, but also design programs that opportunis-
tically scale to all available processing units or cores.

1.2 Actors versus threads

In a concurrent program, many independently executing threads, or sequen-
tial processes, work together to fulfill an application’s requirements. Inves-
tigation into concurrent programming has mostly focused on defining how
concurrently executing sequential processes can communicate such that a
larger process—for example, a program that executed those processes—can
proceed predictably.

The two most common ways of communication among concurrent threads
are synchronization on shared state, and message passing. Many familiar
programming constructs, such as semaphores and monitors, are based on
shared-state synchronization. Developers of concurrent programs are famil-
iar with those structures. For example, Java programmers can find these
structures in the java.util.concurrent library.4 Among the biggest chal-
lenges for anyone using shared-state concurrency are avoiding concurrency
hazards, such as data races and deadlocks, and scalability.5

Message passing is an alternative way of communication among coop-
erating threads. There are two important categories of systems based on
message passing. In channel-based systems, messages are sent to channels
(or ports) that processes can share. Several processes can then receive mes-
sages from the same shared channels. Examples of channel-based systems
are MPI6 and systems based on the CSP paradigm7, such as the Go lan-
guage. Systems based on actors (or agents, or Erlang-style processes8) are in
the second category of message-passing concurrency. In these systems, mes-
sages are sent directly to actors; it is not necessary to create intermediary
channels between processes.

4Goetz et al., Java Concurrency in Practice [?]
5One of the reasons why scalability is hard to achieve using locks (or Java-style synchro-

nization) is the fact that coarse-grained locking increases the amount of code that is executed
sequentially. Moreover, accessing a small number of locks (or, in the extreme case, a single
global lock) from several threads may increase the cost of synchronization significantly.

6Gropp et al., Using MPI: Portable Parallel Programming with the Message–Passing
Interface [?]

7Hoare, Communicating sequential processes [?]
8Armstrong et al., Concurrent Programming in Erlang [?]

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 5

An important advantage of message passing over shared-state concur-
rency is that it makes it easier to avoid data races. If processes communicate
only by passing messages, and those messages are immutable, then race con-
ditions are avoided by design. Moreover, anecdotal evidence suggests that
this approach in practice also reduces the risk of deadlock. A potential dis-
advantage of message passing is that the communication overhead may be
high. To communicate, processes have to create and send messages, and
these messages are often buffered in queues before they can be received to
support asynchronous communication. In contrast, shared-state concurrency
enables direct access to shared memory, as long as it is properly synchro-
nized. To reduce the communication overhead of message passing, large
messages should not be transferred by copying the message state; instead,
only a reference to the message should be sent. However, this reintroduces
the risk for data races when several processes have access to the same muta-
ble (message) data. It is an ongoing research effort to provide static checkers
(for instance, the Scala compiler plug-in for uniqueness types9 that can ver-
ify that programs passing mutable messages by reference do not contain data
races.

Let’s take a step back, and look at actor-based programming from a
higher-level perspective. To appreciate the difference, and the relationship,
between more traditional concurrency constructs and actors, it helps to pay
a brief visit to the local railroad yard.

Imagine yourself standing on a bridge overlooking the multitude of indi-
vidual tracks entering the rail yard. You can observe many seemingly inde-
pendent activities taking place, such as trains arriving and leaving, cars being
loaded and unloaded and so on.

Suppose, then, that your job was to design such a railroad yard. Thinking
in terms of threads, locks, monitors, and so on, is similar to the problem of
figuring out how to make sure that trains running on parallel tracks don’t
collide. It is a very important requirement; without that, the rail yard would
be a dangerous place, indeed. To accomplish that task, you would employ
specialized artifacts, such as semaphores, monitors, switches.

Actors illuminate the same rail yard from the higher perspective of en-
suring that all the concurrent activities taking place at the rail yard progress
smoothly: that all the delivery vehicles find their ways to train cars, all the
trains can make their progress through the tracks, and all the activities are

9Haller and Odersky, Capabilities for Uniqueness and Borrowing [?]

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 6

properly coordinated.
You will need both perspectives when designing a rail yard: Thinking

from the relatively low-level perspective of individual tracks ensures that
trains don’t inadvertently cross paths; thinking from the perspective of the
entire facility helps ensure that your design faciliates smooth overall opera-
tion, and that your rail yard can scale, if needed, to accommodate increased
traffic. Simply adding new rail tracks only goes so far: you need some over-
all design principles to ensure that the whole rail yard can grow to handle
increased traffic, and that greater traffic can scale to the full capacity of the
tracks.

Working on the relatively low-level details of individual tracks (or prob-
lems associated with interleaving threads), on the one hand, and the higher-
level perspective of the entire facility (actors) on the other, require somewhat
different skills and experience. An actor-based system is often implemented
in terms of threads, locks, monitors, and the like, but actors hide those low-
level details, and allow you to think of concurrent programs from a higher
vantage point.

1.3 The indeterministic soda machine

In addition to allowing you to focus on the scalability aspect of concurrent
applications, actors’ higher-level perspective on concurrency is helpful be-
cause it provides a more realistic abstraction for understanding how concur-
rent applications work. Specifically, concurrent programs exhibit two char-
acteristics that, while also present in sequential applications, are especially
pronounced when a program is designed from the ground up to take advan-
tage of concurrency. To see what these are, we need only to stop by the office
soda machine.

A soda machine is convenient not only to quench our thirst on a hot
summer day, but also because it’s a good metaphor for a kind of program that
moves from one well-defined state to another. To start out, a soda machine
awaits input from the user, perhaps prompting the user to insert some coins.
Inserting those coins causes the soda machine to enter a state where it can
now ask the user to make a selection of the desired drink. As soon as the user
makes that selection, the soda machine dispenses a can and moves back into
its initial state. On occasion, it may also run out of soda cans—that would
place it in an “out of service” state.

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 7

out of
orderstart

expect
coins

expect
selection

dispense
drink

coins
inserted

selection
made

problem
occurred

problem
occurred

problem occurred

drink dispensed

Figure 1.1 · Global state in a soda machine and state transitions.

At any point in time, a soda machine is aware of only one state. That state
is also global to the machine: Each component—the coin input device, the
display unit, the selection entry keypad, the can dispenser, and so on—must
consult that global state to determine what action to take next: For instance,
if the machine is in the state where the user has already made his selection,
the can dispenser component is allowed to release a soda can into the output
tray.

In addition to always being in a well-defined state, our simple abstraction
suggests two further characteristics of a soda machine: First, that the number
of possible states the machine can enter is finite and, second, that given any
one of those possible states, we can determine in advance what the next state
will be. For instance, if you inserted a sufficient amount of coins, you would
expect to be prompted for the choice of drink. And having made that choice,
you expect the selected drink to be dispensed.

Of course, you’ve probably had occasions to experience soda machines
that did not exactly behave in such a predictable, deterministic, way. You
may have inserted plenty of coins, but instead of being prompted for your
choice, you were presented with an unwelcoming “OUT OF ORDER” mes-
sage. Or you may not have received any message at all—but also did not
receive your frosty refreshment, no matter how hard you pounded the ma-
chine. Real-world experience teaches us that soda machines, like most phys-
ical objects, are not entirely deterministic. Most of the time they move from

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 8

one well-defined state to another in an expected, predetermined fashion; but
on occasion they move from one state to another—to an error state, for
instance—in a way that could not be predicted in advance.

A more realistic model of a soda machine, therefore, should include the
property of some indeterminism: A model that readily admits a soda ma-
chine’s ability to shift from one state to another in a way that could not be
determined in advance with certainty.

Although we are generally adept at dealing with such indeterminism in
physical objects—as well as when dealing with people—when we encounter
such indeterminism in software, we tend to consider that behavior a bug.
Examining such “bugs” may reveal that they crept into our code because
some aspect of our program was not sufficiently specified.

Naturally, as developers we desire to create programs that are well-specified
and, therefore, behave as expected—programs that act exactly in accord with
detailed and exhaustive specifications. Indeed, one way to provide more or
less exact specifications for code is by writing test cases for it.

Concurrent programs, however, are a bit more like soda machines than
deterministic sequential code. That’s because concurrent programs gain many
of their benefits due to some aspects of a concurrent system intentionally be-
ing left unspecified.

The reason for that is easy to understand intuitively when considering
a processor with four cores: Suppose that code running on the first core
sends messages to code running on the three other cores, and then awaits
replies back from each. Upon receiving a reply, the first core performs further
processing on the response message.

In practice, the order in which cores 2, 3, and 4 send back their replies is
determined by the order in which the three cores finish their computations.
If that reply order is left unspecified, then core 1 can start processing a reply
as soon as it receives one: it does not have to wait for the slowest core to
finish its work.

In this example, leaving the reply order from cores 2, 3, and 4 unspecified
helps to best utilize the available computing resources. At the same time,
your program can no longer rely on any specific message ordering. Instead,
your application must function deterministically even though its component
computations, or how those components interact, may not be fully specified.

One application of building deterministic systems out of indeterministic
component computations are data centers constructed of commodity, off-the-
shelf (COTS) components. Many well-known Web services companies have

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 9

Core 1

Core 3

Core 2

Figure 1.2 · Messages between cores.

proven the economic advantages of using COTS hardware as basic build-
ing blocks for highly reliable data centers. Such an environment becomes
practical when infrastructure software alleviates the need for developers to
concern themselves with the intricacies of how such a data center partitions
work between the various hardware components. Instead, application devel-
opers can focus on higher-level concerns, such as specifying the algorithms
to use when servicing an incoming request.

A popular example of an infrastructure that makes programming on COTS
clusters easier is MapReduce.10 With MapReduce, a user provides some
data, as well as some algorithms to operate on that data, and submits that
as a request to the MapReduce infrastructure software. The MapReduce
software, in turn, distributes the workload required to compute the specified
request across available cluster nodes and returns a result to the user.

An important aspect of MapReduce is that, upon submitting a job, a user
can reasonably expect some result back. For instance, should a node ex-
ecuting parts of a MapReduce job fail to return results within a specified
time period, the MapReduce software restarts that component job on an-
other node. Because of its guarantee of returning a result, MapReduce not
only allows an infrastructure to scale a compute-intensive job to a cluster of
nodes, but more significantly, MapReduce lends reliability guarantees to the

10Dean and Ghemawat, MapReduce: Simplified data processing on large clusters [?]

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 10

computation. It is that reliability aspect that makes MapReduce suitable for
COTS-based compute clusters.

While a developer using MapReduce can expect to receive a result back,
exactly when the result will arrive cannot be known prior to submitting the
job: The user knows only that a result will be received, but he cannot, in
advance, know when that will be. More generally, the system provides a
guarantee that at some point a computation is brought to completion, but a
developer using the system cannot in advance put a time bound on the length
of time a computation would run.

Intuitively, it is easy to understand the reason for that: As the infrastruc-
ture software partitions the computation, it must communicate with other
system components—it must send messages and await replies from indi-
vidual cluster nodes, for instance. Such communication can incur various
latencies, and those communication latencies impact the time it takes to re-
turn a result. You can’t tell, in advance of submitting a job, how large those
latencies will be.

Although some MapReduce implementations aim to ensure that a job re-
turns some results—albeit perhaps incomplete results—in a specified amount
of time, the actors model of concurrent computation is more general: It ac-
knowledges that we may not know in advance just how long a concurrent
computation would take. Put another way, you cannot place a time bound
in advance on the length a concurrent computation would run. That’s in
contrast to traditional, sequential algorithms that model computations with
well-defined execution times on a given input.

By acknowledging the property of unbounded computational times, ac-
tors aim to provide a more realistic model of concurrent computing. While
varying communication latencies is easy to grasp in the case of distributed
systems or clusters, it is also not possible in a four-core processor to tell in
advance how long before cores 2, 3, and 4 will send their replies back to core
1. All we can say is that the replies will eventually arrive.

At the same time, unboundedness does not imply infinite times: While
infinity is an intriguing concept, it lends but limited usefulness to realistically
modeling computations. The actor model, indeed, requires that a concurrent
computation terminate in finite time, but it also acknowledges that it may not
be possible to tell, in advance, just how long that time will be.

In the actor model, unboundedness and indeterminism—or, unbounded
indeterminism—are key attributes of concurrent computing. While also present
in primarily sequential systems, these are pervasive attributes of concurrent

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287


Chapter 1 · Concurrency Everywhere 11

programs. Acknowledging these attributes of concurrency and providing a
model that allows a developer to reason about a concurrent program in the
face of those attributes are the prime goals of actors. The actor model accom-
plishes that by providing a surprisingly simple abstraction that can express
program control structures you are familiar with from sequential programs—
such as if, while, for, and so on—and make those control structures work
predictably in a system that can opportunistically scale in a concurrent envi-
ronment.

Buy the Book · Discuss

http://www.artima.com/shop/actors_in_scala
http://www.artima.com/forums/forum.jsp?forum=287

