
Flex 4 Fun
Excerpt

artima
ARTIMA PRESS

MOUNTAIN VIEW, CALIFORNIA

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


2

Thank you for downloading this sample eBook chapter from the First
Edition of Flex 4 Fun. The only difference between the actual eBook chapter
and this sample is that in this document, the page numbers start at 1, and
references outside the chapter are not hyperlinked. In the actual eBook, those
reference also serve as a hyperlink to the referenced page in the book.

The difference between this chapter and its appearance in the paper book
is that the paper book uses shades of gray, not color, for figures and to syntax
highlight code. We hope you find this sample chapter useful and enjoyable.

Bill Venners
President, Artima, Inc.

Copyright © 2010 Chet Haase. All rights reserved.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Excerpt from Flex 4 Fun

Chapter 2

Graphics

Graphics are the heart of GUI applications. Graphical objects are used to
describe the visual appearance of components as well as to create custom
rendering like gradient backgrounds. The richness of the graphics platform
in a GUI toolkit determines how easily you can build rich client applications
with that toolkit. Since Flex sits atop the Flash platform, there is a wealth of
graphics capabilities available, enabling very rich clients indeed.

You can see the use of graphics objects in every Flex 4 component, like
this panel full of controls:

Every one of these components is made up of simple graphics primitives.
The panel consists of a couple of rectangles with a darker fill for its header.
The button is a rounded rectangle filled with a light gradient and stroked

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 4

with a darker border color. The checkbox has a filled and stroked rectangle
for the box and a path object for the check mark. The slider is composed of
a rounded rectangle for the track and a circle for the thumb. And the radio
button has one circle for the button and one for the selection indicator.

You use these same graphics primitives to create very custom and dy-
namic objects on the screen, as seen here:

(Demo: Shapely)

In this drawing application, all of the control panel objects on the left as
well as the scribbled face on the drawing canvas were created with graphic
elements. We’ll see more of the Shapely application later in this chapter as
we explore various shapes and drawing attributes available in Flex 4.

Flex 4 graphics

Once upon a time (as far back as Flex 3), if you wanted custom graphics, you
had to dive into ActionScript code, override a method or two, create and use
Flash display objects, and issue calls into their Graphics objects. It was the
only way to draw custom graphics from your Flex application. For example,
here’s how you might draw a circle in Flex 3:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 5

(File: ThreeCircles.mxml)
var component:UIComponent = new UIComponent();

var sprite:Sprite = new Sprite();

sprite.graphics.beginFill(0xff0000);

sprite.graphics.drawEllipse(0, 0, 100, 100);

sprite.graphics.endFill();

component.addChild(sprite);

addElement(component);

Flex 4 provides a new graphics API that allows you to easily create objects
that describe visual elements. The Flex library internally handles the details
of telling Flash how to create and render these objects. For example, here’s
a simple circle using the new graphics classes of Flex 4:

var circle:Ellipse = new Ellipse();

circle.width = 100;

circle.height = 100;

circle.fill = new SolidColor(0x0000ff);

circle.x = 100;

addElement(circle);

And here’s a even better example of the Flex 4 approach, using some of the
new MXML tags:

<s:Ellipse x="200" y="0" width="100" height="100">

<s:fill>

<s:SolidColor color="green"/>

</s:fill>

</s:Ellipse>

You will notice some important differences between the old way of creating
graphics and the new way of doing it in Flex 4:

Declarative The approach of creating graphics in Flex 4, like much of the
rest of Flex, is object-oriented and declarative. You create the graphics
primitive you need, set the properties of that object to tell it how to
draw itself, and add it to the appropriate container in your application.
The old way of drawing in Flex 3 was, by contrast, very manual. You
got a reference to Flash Graphics object and called drawing functions
on that object to tell the object how to render itself.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 6

MXML Because the new graphic elements are declarative, you can use
MXML markup to describe your visuals. You can now use MXML
to describe the visual aspects of your program, and only dive into
ActionScript for the more programmatic functionality of your appli-
cation, like the business logic. This is particularly important when
customizing the look of Flex 4 components through their skins. These
component skins, which are written in MXML files, hold the graphical
elements that describe the component’s appearance. We will see more
about component skinning in Chapter 6.

Flex-friendly You’ll notice, in the Flex 3 code in the previous example
where we draw into a sprite graphics object, an indirect approach of
adding our sprite to a UIComponent, which is then added to our Flex
application. This is because Flex 3 applications only understand com-
ponents, not raw Flash display objects like our Sprite above. So
whenever we want custom graphics in a Flex 3 application, they need
to be drawn into a custom component, or added into a UIComponent,
or by some other means added indirectly to the Flex display list. The
Flex 4 approach is much more tightly integrated with Flex overall. We
create GraphicElement objects, like the Ellipse in the Flex 4 code
in the example, and add them directly to Flex containers.

For the rest of the chapter, we’ll see the different kinds of graphics ob-
jects that we can create.

Shapely: a simple drawing tool

As you read through this chapter, learning about strokes and fills and the
various graphic elements that you can use in Flex 4, you will see these objects
in use in the Shapely drawing application seen earlier on page 3. But in
order to understand how the various objects fit into that application, we’ll
first need to understand how the application works in general. Let’s go over
its basic architecture and mechanisms.

The Shapely application is a simple drawing application that allows the
user to select between a small set of shapes (lines, rectangles, ellipses, and
paths) along with different stroke and fill modes for the shapes. The user
can then draw these shapes on the canvas with the mouse. In order to keep
the application simple, both in terms of the UI and the code that we need to

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 7

digest, the application does not expose the full spectrum of graphic primitives
and fill/stroke options that we cover in this chapter. But the application is a
good place from which to start if you want to further enhance it with that
additional functionality yourself.

Some of the code that you will see in the application uses techniques
or functionality in Flex 4 that we have not yet covered. For example, some
of the code in the ControlPanel class uses the new states syntax (which I
talk about in Chapter 4) to change the look of the drawing primitive icons
when the icons are selected. Don’t worry too much about these bits of the
code. The real point in this chapter is to understand how the application UI
is drawn, using the graphics primitives and fills/strokes that we discuss here,
and how the shapes are created by the user when dragging the mouse around.
So let’s get into the code.

First of all, take a look at the application GUI. As you can see in the
screenshot on page 3, a control panel at the left contains buttons that the user
selects to choose the current shape and the drawing options for that shape.
The rest of the window contains a drawing canvas, where the user drags
the mouse to draw shapes. The following sections will cover how the main
application, the control panel, and the drawing canvas work.

The Shapely application class

The top-level application is very simple; it just instantiates and positions the
custom components for the control panel and the drawing canvas:

(File: Shapely.mxml)
<components:ControlPanel id="controlPanel"

width="52" height="100%"

currentStateChange="drawingModeChange()"

drawingStateChange="drawingStateChange(event)"/>

<components:DrawingCanvas id="canvas"

left="52" right="0"

top="0" bottom="0"/>

Some additional logic is in script code to handle setting the drawing state for
the application. The drawing state is determined by actions in the control
panel. A change in the shape to be drawn results, through the event mecha-
nism, in a call to the drawingModeChange() function:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 8

private function drawingModeChange():void

{

switch (controlPanel.currentState)

{

case "lineMode":

canvas.drawingMode = DrawingCanvas.LINE;

break;

case "rectMode":

canvas.drawingMode = DrawingCanvas.RECT;

break;

case "ellipseMode":

canvas.drawingMode = DrawingCanvas.ELLIPSE;

break;

case "pathMode":

canvas.drawingMode = DrawingCanvas.PATH;

break;

}

}

A change in the stroke or fill controls sends a drawingStateChange event
and results in a call to the drawingStateChange() function:

private function drawingStateChange(

event:DrawingStateChangeEvent):void

{

canvas.stroke = event.stroke;

canvas.fill = event.fill;

}

When the application receives these events, it sets the appropriate state in
the drawing canvas to be used in future drawing operations. These events are
received when the user interacts with the control panel.

The Shapely control panel

Now let’s take a look at the control panel, from the file ControlPanel.as.
This component is a subclass of Group, the simplest Flex 4 container and the
base class for other container classes. ControlPanel is just a basic container
for the various icons that control drawing state.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 9

Each of the drawing primitive icons (the line, rectangle, ellipse, and path)
have the same structure: a Group contains the icon graphics and listens for
click events to signal that the user wants to switch to this drawing mode. For
example, here is the group container for the line drawing icon:

(File: components/ControlPanel.mxml)
<s:Group id="line" width="40" height="40"

click="setMode(event)">

<!-- group contents -->

</s:Group>

You can see in the previous code that a mouse click results in a call to the
setMode() function. This function sets the drawing mode by setting the
currentState of the component:

private function setMode(event:MouseEvent):void

{

switch (event.currentTarget)

{

case line:

currentState = "lineMode";

break;

case rect:

currentState = "rectMode";

break;

case ellipse:

currentState = "ellipseMode";

break;

case path:

currentState = "pathMode";

break;

}

}

When any icon is clicked, it dispatches an event to this function, which sets
the currentState property according to the button that was clicked. That
change to currentState causes Flex to dispatch a currentStateChanged
event, which is received by the drawingModeChange() function in Shapely
that we saw earlier. This function sets the drawing mode for the canvas
(which we will see later).

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 10

Finally, components at the bottom of the control panel determine the
stroke and fill used when drawing:

Two checkboxes determine whether the object will be stroked and/or
filled. In between the checkboxes are ColorPicker components for the
stroke and the fill gradient (choose both fill colors to be the same to get a
solid color). A preview rectangle between the stroke and fill sections shows
the user what shapes will look like with the current stroke and fill settings.
When any of these settings are changed, the setDrawingState() function
is called. This function will be discussed later, after sections on the stroke
and fill mechanisms for graphics primitives.

That’s it for the control panel; onto the canvas, where the work is done
for creating and drawing the shapes.

The Shapely drawing canvas

The main job of the DrawingCanvas class is handling mouse events and
turning them into shapes on the canvas. It does this by listening first for
mouseDown events, then to further mouseMove and mouseUp events to track
mouse dragging actions by the user. The mouseDown listener is added to the
canvas object in its constructor:

(File: components/DrawingCanvas.as)
addEventListener("mouseDown", mouseDownHandler);

When the user drags the mouse around the canvas, the code creates and ma-
nipulates different shapes according to the drawing mode that the user se-
lected in the control panel. The following constants and variables are used
to track the shape that is created on mouseDown:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 11

public static const LINE:int = 0;

public static const RECT:int = 1;

public static const ELLIPSE:int = 2;

public static const PATH:int = 3;

public var drawingMode:int = LINE;

The drawingMode property is set by the application code in Shapely in its
drawingModeChange() function, as we saw earlier. This property is used
when we handle mouseDown events in our mouseDownHandler() function.

A mouseDown event on the canvas results in an event which causes a call
to the mouseDownHandler() function. This function creates a new shape
(which we’ll see later, when we discuss shapes) and adds listeners for both
mouseMove and mouseUp events:

addEventListener(MouseEvent.MOUSE_MOVE, mouseMoveHandler);

addEventListener(MouseEvent.MOUSE_UP, mouseUpHandler);

Note that the application only bothers listening for mouseMove and mouseUp
events after receiving an initial mouseDown event. If the user is simply mov-
ing the mouse around without pressing it first, then it does not matter because
they are not drawing a shape. But as soon as the user presses the mouse but-
ton, a shape is created and mouse movement is tracked to allow editing the
shape with drag operations.

A mouse drag causes a call into the mouseMoveHandler() function:

private function mouseMoveHandler(event:MouseEvent):void

{

dragTo(event.localX, event.localY);

}

This function calls the dragTo() function to change the shape currently be-
ing drawn, according to the current location to which the user has dragged
the mouse. When the user releases the mouse button, there is a call to the
mouseUpHandler() function:

private function mouseUpHandler(event:MouseEvent):void

{

dragTo(event.localX, event.localY);

removeEventListener(MouseEvent.MOUSE_MOVE,

mouseMoveHandler);

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 12

removeEventListener(MouseEvent.MOUSE_UP,

mouseUpHandler);

}

As in the mouseMoveHandler() function, we call dragTo() to change the
shape according to this final mouse location. We then remove our move/up
listeners because we no longer care about these events until the next time the
user presses the mouse button down.

That’s it for the main application functionality of Shapely. The rest
of the application code is about the shapes that are created and the drawing
attributes that those shapes have. We’ll see how all of these work as we cover
these topics in the rest of this chapter.

Graphics primitives: getting into shape

Your first reaction to learning about the graphic elements in Flex might have
been: “What can I draw?” You may think, given that all of the Flex com-
ponents are drawn with these shapes, there would be a myriad of different
shapes to choose from. But in fact, there is just a small set: Line, Rect,
Ellipse, and Path. With just these four shapes, and with the stroke and
fill options that we’ll discuss later, you can draw all kinds of things, from
simple graphics for components, like lines, circles, and rounded rectangles,
to very custom artwork.

In this section, we’ll see how each of these shapes are created and used
in the Shapely application.

The Line class

Lines are the simplest graphics primitive; they are just single-segment con-
nectors between endpoints. You can change what the lines look like using
the stroke properties that we’ll see in Section 1, but the basic geometry of
lines is very simple: they start at one point and end at another.

The Line class defines simple endpoint properties for a single line seg-
ment. These two endpoints are described by the (xFrom, yFrom) and (xTo,
yTo) properties. Here are two sample lines created in MXML code:

(File: SimpleObjects.mxml)
<s:Line xFrom="20" yFrom="20" xTo="100" yTo="100">

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 13

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Line>

<s:Line xFrom="30" yFrom="20" xTo="110" yTo="100">

<s:stroke>

<s:SolidColorStroke color="gray" alpha=".8"

weight="5"/>

</s:stroke>

</s:Line>

This MXML code results in the following graphics on the screen:

(Demo: SimpleObjects)

Don’t worry about the stroke objects in the code yet; we’ll read more
about strokes in Section 1.

Now let’s see how we create Line objects in the Shapely application.
When the user presses the mouse key down on the drawing canvas, the func-
tion mouseDownHandler() is called and the appropriate shape is created.
When lines are selected, the following code in that function is executed:

(File: components/DrawingCanvas.as)
if (drawingMode == LINE)

{

shape = new Line();

var line:Line = Line(shape);

line.xFrom = event.localX;

line.yFrom = event.localY;

line.xTo = event.localX;

line.yTo = event.localY;

}

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 14

This code creates the line object and sets its x and y from/to properties, just
like in the previous MXML code example. In this case, we’re setting the
from/to points to the same point because the user has not yet dragged the
mouse, so the start and end points of the line are both set to the location of
that initial mouse event.

The line object is then assigned the current stroke attribute, which we’ll
talk about later, and is added to the drawing canvas, which makes it visible
in the application window:

shape.stroke = stroke;

addElement(shape);

A mouse drag caused a call to the mouseMoveHandler() function, which
then calls dragTo(), as we saw earlier. The shape is then changed appropri-
ately. In the case of lines, we simply change the (xTo, yTo) endpoint:

case LINE:

Line(shape).xTo = dragX;

Line(shape).yTo = dragY;

break;

When the user releases the mouse button, the mouseUpHandler() function
is called, which again calls the dragTo() function to set a final (xTo, yTo)
endpoint for the line.

That’s it for lines. They are very simple objects with just two endpoints.
The way that the line between those points is drawn depends on the stroke
property, which we will discuss in Section 1.

The Rect class

Many GUI controls use rectangular graphics. Rectangles are useful for defin-
ing the boundaries of objects, like the edges of buttons, or the box of check-
boxes, or the borders of panels and windows. Rectangles are also useful for
defining the backgrounds of containers, such as a gradient background in an
application window. Unlike lines, which have only a stroke object to define
the line characteristics, rectangles have both outline graphics, defined by a
stroke, and interior graphics, defined by a fill.

The Rect object draws a rectangle with optional rounded corners. The
dimensions of the shape are determined by its width and height proper-
ties. The dimensions of the rounded corners, if any, are determined by the

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 15

radiusX and radiusY properties, which apply to all corners of the rectangle.
Some situations call for different rounding on each corner, so there are also
overriding properties, such as bottomLeftRadiusX and similar properties
for the other corners.

Here is an example of creating a simple black square in MXML:

(File: SimpleObjects.mxml)
<s:Rect x="150" y="20" width="80" height="80">

<s:fill>

<s:SolidColor color="0"/>

</s:fill>

</s:Rect>

In the Shapely application, rectangles are created as the user drags the cursor
when the rectangle drawing mode is selected. In the mouseDownHandler()
function, we switch on drawingMode to create the appropriate shape:

(File: components/DrawingCanvas.as)
switch (drawingMode)

{

case RECT:

shape = new Rect();

shape.x = event.localX;

shape.y = event.localY;

break;

Only the location of the object is set; its width and height have the default
value of 0, because the user has not yet dragged out the shape to give it
dimension. The shape is then filled with the current fill object, which
we’ll discuss later:

FilledElement(shape).fill = fill;

Then the object’s stroke is set and it is added to the scene, as we saw in the
earlier Line section.

As the user drags the mouse around and then releases the mouse button,
the dragTo() function is called. This function sets the rectangle’s dimen-
sions according to the new mouse position:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 16

case RECT:

shape.width = dragX - shape.x;

shape.height = dragY - shape.y;

break;

The Ellipse class

Ellipses are less common in UI controls, although circles (ellipses with equal
width and height values) are useful for components like radio buttons. Circu-
lar controls are also used in custom UIs, where you may not want your but-
tons to look like standard rectangular buttons. Ellipse is similar to Rect; it
is positioned with x and y and sized with width and height.

This code creates a gray circle with a black outline in MXML:

(File: SimpleObjects.mxml)
<s:Ellipse x="20" y="220" width="80" height="80">

<s:fill>

<s:SolidColor color="gray"/>

</s:fill>

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Ellipse>

And this is what it looks like:

(Demo: SimpleObjects)

The code for ellipses in Shapely is very similar to that for rectangles,
because both shapes are positioned and sized in the same way. First, the
shape is created based on the value of the drawingMode variable in the
mouseDownHandler() function:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 17

(File: components/DrawingCanvas.as)
case ELLIPSE:

shape = new Ellipse();

shape.x = event.localX;

shape.y = event.localY;

break;

On mouse move and up events, the shape is resized according to the new
mouse location in the dragTo() function:

case ELLIPSE:

shape.width = dragX - shape.x;

shape.height = dragY - shape.y;

break;

The Path class

Lines, rectangles, and ellipses are great for creating simple shapes and lines.
But if you want an irregular shape, curved lines, or custom artwork from
design tools, you’re going to need to draw Paths. The Path object constructs
a path, filled or empty, from a set of line and curve segments. You specify
the segment information for a path in the data property, which is a String
specifying the various move/line/curve pieces that construct the path. An
optional winding property can be used to specify which side of the path
should be filled (if the fill property is not null).

Several different commands can be used in a Path’s data string. Each
one is abbreviated with a single letter, followed by applicable numerical val-
ues.1 A capital letter indicates the values are absolute coordinates, whereas
a lower case letter indicates a position relative to the current position:

move (example: data="m 10 20") move the pen to the specified location

line (example: data="l 10 20") draw a line to the specified location

horizontal line (example: data="h 10") draw a horizontal line to the spec-
ified x location (a simplification of the line command)

1 The syntax and abbreviations used for the string match those of the Path element of
SVG (Scalable Vector Graphics), a W3C standard vector API.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 18

vertical line (example: data="v 20") draw a vertical line to the specified
y location (a simplification of the line command)

quadratic Bézier (example: data="q 0 0 10 20") draw a curve2 with one
control point whose x and y are specified first, followed by the x and
y location the curve will draw to.

cubic Bézier (example: data="c 0 0 5 10 10 20") draw a curve with two
control points whose x and y are specified first, followed by the x and
y location the curve will draw to.

close path (example: data="... z") close off the path by drawing a line to
the starting point of the path. This item is optional; if it is not supplied,
the path will end at the last data point.

It is important to note that each drawing operation, whether move, line, or
curve, starts from the current pen position and ends with the pen in the posi-
tion specified in the command. So you only need to move the pen explicitly if
you wish to start a segment from a different location than its current one. For
example, if you want to draw a path that goes from (0, 0) over to (100, 0)
and then down to (100, 100), you could simply type data="H 100 V 100".
Here’s a simple path constructed in MXML:

(File: SimpleObjects.mxml)
<s:Path x="20" y="320" data="L 80 80 V 0 L 0 80 V 0">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

<s:fill>

<s:SolidColor color="gray"/>

</s:fill>

</s:Path>

2 A Bézier curve is specified by anchor points, the endpoints of the curve, and control
points, which specify the path the curve follows between the anchor points. A quadratic
Bézier curve starts at one anchor point going in the direction of a single control point and
ends at the other anchor point coming from the direction of that control point. A cubic Bézier
curve leaves the starting anchor point in a direction of a first control point and arrives at
the endpoint in a direction from a second control point. These curves generally do not pass
through the control points unless those points lie in a straight line between the anchor points.
In the Path data string, the first anchor point is implicitly specified by the current location of
the pen; the curve operations need only specify the control point(s) and ending anchor point.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 19

Path to confusion
It may not seem like hand-coding paths with complex curves would be
simple at first glance. But upon using the Path API for a while . . .
it’s still not simple. Instead, paths can be easy to code for simple prim-
itives, but more complex paths will probably come from tools instead.
For example, Adobe Illustrator and Adobe Fireworks can export draw-
ings into a format called FXG, which is a simplified form of exactly
the graphics primitives detailed in this chapter. Vector paths are used
extensively in Illustrator, and these shapes output as Path primitives
in the FXG files. So you might want to consider the Path primitive as
something that you may encounter in code that is generated by tools,
but you probably won’t be using it much in your hand-coded graphics.

And this is what that path looks like:

(Demo: SimpleObjects)

Now we’ll create Path objects in Shapely. As with the other shapes,
paths are created in the mouseDownHandler() function. But we do not yet
add data to the path since the user has only told us where it will be located,
not where it will draw to next. Instead, we create the pathPoints Vector
to hold the points of the Path:

(File: components/DrawingCanvas.as)
case PATH:

shape = new Path();

pathPoints =

new <Point>[new Point(event.localX, event.localY)];

break;

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 20

When the user moves the mouse or releases the button, the dragTo() func-
tion is called, where the new point is added to pathPoints and the function
constructPath() is called:

case PATH:

pathPoints[pathPoints.length] = new Point(dragX, dragY);

constructPath();

break;

The constructPath() function turns the set of points in pathPoints into
a data string for the path:

private function constructPath():void

{

var dataString:String = "M " +

pathPoints[0].x + " " + pathPoints[1].y;

for (var i:int = 1; i < pathPoints.length; ++i)

{

var pt:Point = pathPoints[i];

dataString += " L " + pt.x + " " + pt.y;

}

Path(shape).data = dataString;

}

This function walks through pathPoints, turning the first point into a move
operation and subsequent points into line operations in the data string. This
process causes a multi-segment line to be created, starting at the point where
the user first pressed the mouse (the first point in pathPoints) and con-
tinuing through every other point we recorded. Because mouse motion is
handled very quickly, this line-segment approach results in a reasonable ap-
proximation to freehand scribbling because each straight line segment will
only be as long as the distance covered between each mouseMove event.

The reason for the extra layer of indirection with pathPoints is that
we cannot simply edit the existing Path shape’s points, like we do with the
Line, Rect, and Ellipse shapes that we saw earlier. Instead, the only way
to change a Path is to supply a new data string. So we record the path’s
points in a separate data structure and re-create the data string every time
we add a new point.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 21

Now that we’ve seen the different shapes that are possible to create, it’s
time to talk about the attributes with which the shapes are drawn. Let’s learn
about stroke and fill.

Strokes of genius: lines and outlines

You may want to draw lines in your UI to achieve a particular effect, like
borders on filled areas, outlines on empty areas, or separator lines between
different elements in the interface. These may be straight or curved lines,
or bounding lines around larger, filled areas. These lines can be drawn in
different ways, with different colors, widths, and joins at the corners. These
line properties are defined as strokes on the objects.

All of the graphics objects in Flex 4 except for BitmapImage, which
we’ll see later, have an optional stroke property that defines the character-
istics of the object’s lines, like their color and width. For the one-dimensional
Line object, the stroke is all there is. The object’s stroke is all that you
see of the object. For the rest of the objects, Path, Rect, and Ellipse, the
stroke is the border line around the object’s filled area.

Strokes come in three varieties: SolidColorStroke, which has a sin-
gle color, and two strokes that use gradients, LinearGradientStroke and
RadialGradientStroke. You’ll see more about gradients later when I dis-
cuss fill objects. For now, we’ll talk about solid color strokes, which is the
common case for lines.3

A stroke has a few properties that are necessary for specific situa-
tions, but for which the defaults are generally sufficient. For example, the
joints and miterLimit properties are useful for controlling how the inter-
sections look with multi-segment stroked objects like Path and Rect. And
the scaleMode property controls how scaling on the object affects the width
of the stroke. Here we’ll focus on just the more common stroke properties
used to achieve particular effects on the stroke.

weight determines the width of the stroke in pixels. A value of 0 is equal
to a one-pixel-wide line, but the line stays at that thickness even when
scaled. This behavior is in contrast to that when weight equals 1,
which also results in a one-pixel-wide line on an unscaled object. But

3 You can see cases of gradients used in strokes in some of the standard Flex 4 component
skins like ButtonSkin. These skins have very subtle effects that call for rich graphic elements
like gradient strokes and fills. But more typical lines and borders are drawn with single colors.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 22

a line with weight equal to 1 will scale with the object so an object
with a scale factor of 2 will have lines twice as wide as that object with
a scale factor of 1.

color an unsigned integer value that describes the red, green, and blue
(RGB) values that contribute to the final color value. This is a stan-
dard RGB representation in an integer, where the bottom-most (least
significant) byte represent the blue value, the next byte holds the green
value, and the next byte holds the red value. You can picture the color
in hex form as the number 0xRRGGBB. The left-most (most significant)
byte of the 32-bit value is unused.

For convenience, the MXML compiler will turn standard color names
into the appropriate integer values. You can also use the numeric form
of a color in either hex, integer, or HTML-color formats. For example,
a value of "blue" is equivalent to "0xff", "255", and "#FF".

alpha the amount of translucency that the object’s stroke has. A value of 1
causes the stroke to be completely opaque (nothing behind the object’s
stroke can be seen through it). A value of 0 causes the stroke to be
completely transparent (the stroke is not seen at all, and objects behind
it are fully visible). Any value between 0 and 1 causes the stroke to
be translucent, allowing both the stroke and the objects behind it to
be partially visible, with greater values of alpha making the stroke
more opaque. The opacity of the overall object you create is typically
controlled with the object’s alpha property, not the object’s stroke’s
alpha, but if you want separate control over the stroke’s opacity, use
the stroke’s alpha property.

Here is an example of two lines drawn with different strokes:

<s:Line xFrom="20" yFrom="20" xTo="100" yTo="100">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Line>

<s:Line xFrom="100" yFrom="20" xTo="20" yTo="100">

<s:stroke>

<s:SolidColorStroke color="gray"

alpha=".6" weight="10"/>

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 23

</s:stroke>

</s:Line>

The first object is a black line with the default weight (0) and alpha (1).
The second object is a wide gray that is translucent (note that you can see the
black line through the wide gray line), as seen here:

(Demo: SimpleObjects)

The StrokeTest application helps visualize how the various stroke pa-
rameters affect the look of our stroked primitives. This code draws a Rect
object with a stroke:

(File: StrokeTest.mxml)
<s:Rect x="20" y="170" width="30" height="30"

scaleX="{Number(scaleXInput.text)}"

scaleY="{Number(scaleYInput.text)}">

<s:stroke>

<s:SolidColorStroke color="black"

weight="{Number(weightInput.text)}"

miterLimit="{Number(miterLimitInput.text)}"

joints="{jointsInput.selectedItem}"

scaleMode="{scaleModeInput.selectedItem}"/>

</s:stroke>

</s:Rect>

The Rect object takes its scale factors from the text input fields so that you
can see how scaling in either direction affects the results. The stroke object
is an instance of SolidColorStroke with a color of black. The stroke
object has other properties that are bound to the values of the various controls
in the GUI. You can see the results from a nonzero line weight and rounded
joints in this screenshot:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 24

(Demo: StrokeTest)

The application is pretty simple as Flex applications go. The interesting
part is in how the properties affect the look of the graphic primitive. Be sure
to play with it to get a feel for how the properties interact.

Fills: it’s what’s on the inside that counts

All of the Flex shapes except Line can have a fill as well as a stroke. The
fill specifies what happens on the interior of the object. So, for example,
a rectangle’s stroke is drawn on the outside of the area and its fill is the
interior of that area. As with stroke, the fill property is optional, so any
of these objects can have a stroke or a fill or both or neither (although
having neither one makes for a pretty useless shape).

Three types of fills are possible. As with stroke, you can fill with a
solid color or a gradient. Additionally, you can fill the area with a bitmap
image. We’ll discuss all of these options next.

Solid color fills

The simplest way to fill an area is with a single solid color. For example,
the drawing canvas of Shapely is filled with a solid white color. Just like
the solid color stroke discussed in Section 1, the solid color fill has the
properties color and alpha. These properties are exactly the same for both
strokes and fills; see Section 1 for more information on them.

Here is an example of two filled rectangles:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 25

(File: SimpleObjects.mxml)
<s:Rect x="150" y="20" width="80" height="80">

<s:fill>

<s:SolidColor color="0"/>

</s:fill>

</s:Rect>

<s:Rect x="250" y="20" width="80" height="80">

<s:fill>

<s:SolidColor color="black" alpha=".5"/>

</s:fill>

<s:stroke>

<s:SolidColorStroke color="black" weight="5"/>

</s:stroke>

</s:Rect>

The first object is a black-filled rectangle with the default weight (0) and
alpha (1). The second object is filled with translucent black (alpha=".5"),
making the result gray since the rectangle is drawn over a white background.
This second rectangle also has a black, wide stroke object. Note that the
opacity of the stroke object is independent of the fill’s opacity.

(Demo: SimpleObjects)

Bitmap fills

Sometimes, you want to fill an area with an image. If you simply want
a rectangular image in the scene, it’s probably easier to use the Image or
BitmapImage class (which we will see more of later in this chapter). But
you can fill any arbitrary shape, like a path, rounded rectangle, or circle,
with an image using a BitmapFill.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 26

Several properties exist on BitmapFill to define the image resource that
the fill uses and the way the image is displayed in the filled area:

source defines the bitmap that is displayed in the fill. This parameter is
flexible and can be used to specify an embedded image file, an instance
of a Bitmap or BitmapData object, or the class name or instance of a
display object. Typically, you use an embedded image file, like this:
source="@Embed('tree.jpg')").4

smooth defines whether the image is “smoothed” when it is scaled to a dif-
ferent size than the original bitmap image. By default, smooth is false,
which results in using the “nearest neighbor” approach, where pix-
els are chosen from the original image based on which one is closest
to the current pixel being drawn. This approach is the fastest option
when the image is scaled to fit into the fill area, since it requires no
calculations. But scaling without smoothing can result in rendering
artifacts. If smooth is set to true, scaled images will use a simple bi-
linear smoothing algorithm, where the pixels to the left, right, top, and
bottom of the destination pixel are combined to create a blended pixel
value. This property only comes into play when an image is scaled;
an image that is displayed in its original resolution will simply use the
original pixel values with no smoothing applied.

fillMode tells the graphic object how to fill the shape area if the source
bitmap is smaller than the shape in either dimension. Three possible
values are available, all of which are specified in the BitmapFillMode
class (or you can choose to use the equivalent strings, like “scale”
instead of BitmapFillMode.SCALE):

SCALE the default value, which causes the bitmap to be scaled (either
down or up) to fit the dimensions of the shape that it fills.

4 The @Embed directive tells the compiler to bundle the specified resource with the appli-
cation (here an image, but Embed can be applied to other assets as well). With BitmapFill,
as well as with the BitmapImage object you’ll see later in this chapter, any image resource
must be embedded. If you use the Image control from Flex 3, you can also refer to an image
by relative or absolute URL, without embedding the file. If you do not use Embed, the image
will be loaded when the Image component is created, and may not be shown immediately if
there is a loading delay. When Embed is used, the resource is bundled with the application
and is loaded synchronously when the component is created. The Embed approach trades off
faster image loading time with larger application footprint size, since embedded image assets
are packaged into the downloaded application’s SWF file.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 27

CLIP causes the bitmap to be drawn in its original size, either being
clipped by the size of the region (if the bitmap is larger than the
dimensions of the BitmapImage) or leaving empty space (if the
bitmap is smaller).

REPEAT causes the bitmap image to repeat or tile itself inside the re-
gion, filling the dimensions of the shape.

alpha represents the amount of translucency that the bitmap fill has. This
property acts just like the same property on the solid color fill that we
discussed earlier.

BitmapFill also has properties for positioning and transforming the bitmap
within the filled area. But those parameters are less commonly used and
self-explanatory, so I’ll defer to the SDK documentation.

Here is a simple example of using a BitmapFill on a rectangle object:

(File: SimpleObjects.mxml)
<s:Rect x="350" y="20" width="80" height="80">

<s:fill>

<s:BitmapFill

source="@Embed('images/SanFrancisco.jpg')"/>

</s:fill>

<s:stroke>

<s:SolidColorStroke color="gray" weight="5"/>

</s:stroke>

</s:Rect>

The rectangle has a fill with just one parameter specified: the source. Note
that the bitmap, by default, scales to fit the area of the object, so little else is
needed unless you want to change the way the image maps into the area.

(Demo: SimpleObjects)

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 28

Gradient fills

Gradients are so useful in creating rich UIs that it is worth taking a moment
to talk more generally about them before diving into the details of the API of
the gradient-based fill classes.

Gradients are used to fill an area with a series of colors. Two types of
gradients are supported in Flex: linear and radial. Linear gradients have a
color change along one dimension (left to right, top to bottom, or along ar-
bitrary degree of rotation). Radial gradients change colors from some center
point out to some perimeter of a circle. Both gradients can be defined with
several colors along the way, so that they can change either from one start
color to a single end color, or they can change from the start color through a
series of other colors (called gradient entries, or sometimes, gradient stops)
along the way before finally reaching the end color.

Gradients provide a simple way to liven up a GUI,
from rich backdrops to 3D effects to interesting
reflection techniques.

Gradients can be used to liven up a GUI in very simple ways, from pro-
viding a rich backdrop to giving components a 3D look, with highlight and
shadow effects that really make 2D objects pop out of the screen. Gradients
can also be used for some special effects like reflections, where the gradient
operates on a translucency value to fade out a reflection for a more realis-
tic look (we’ll see this effect in Chapter 3). It’s definitely worth learning
about the gradient classes so that you can start applying them to your objects
and components. And better yet, gradients are much easier to use with the
new graphic elements defined in Flex 4, so there’s every reason to start using
gradients in your rich client applications.

Both types of gradients, linear and radial, use the same method of speci-
fying the set of colors that the gradient transitions between: GradientEntry.

The GradientEntry class

This class is a simple data structure that holds the information for a partic-
ular gradient stop in a linear or radial gradient. For each entry, we need to
know the color, alpha, and ratio, which is the point in the overall gradient
where the entry’s color is sampled at 100%. In other words, the ratio is the

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 29

point in the overall gradient where the transition from the color in the previ-
ous entry to the color in this entry ends and the transition to the next entry’s
color begins. This information is represented in the following properties:

alpha The translucency of the color for this gradient entry. This value acts
just like the alpha property that we saw earlier for solid color strokes
and fills, except that it holds just for this single object in the set of
gradient entries instead of for the entire fill.

color The color at this point in the gradient, represented as an unsigned
integer. This property is just like the color property in the solid color
stroke and fill discussed earlier, except that this color is true just for
this entry and not for the whole fill.

ratio The point in the gradient where this entry is applied. This is a per-
centage value, with 0 representing the start of the gradient and 1 rep-
resenting the end of the gradient.

A gradient (either linear or radial) consists of a set of GradientEntry ob-
jects which define how the color and translucency of the gradient changes
over the course of the object it fills.

For example, this set of entries defines a gradient that changes smoothly
from black to white to gray:

<s:GradientEntry color="black"/>

<s:GradientEntry color="white"/>

<s:GradientEntry color="gray"/>

Note that this code does not set a ratio value for any of the entries. By
default, the entries spread themselves equally over the available area. Not
defining ratios for these three entries is equivalent to specifying a ratio of 0
for the black entry, .5 for the white entry, and 1 for the final gray entry.

Linear and radial gradient shared properties

Most of the functionality of linear and radial gradients is shared in the com-
mon superclass, GradientBase. These are the more commonly used shared
properties of that class:

entries This property defines an Array of GradientEntry objects, as we
saw in the previous section.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 30

rotation This property defines the angle of rotation, in degrees, along
which the gradient proceeds. By default, gradients move from left
to right, horizontally. For example, the black/white/gray gradient en-
tries example in the previous section would, by default, show up with
black at the left, white in the middle, and gray at the right. A gradient
moving in a different direction is defined using the rotation property.
For example, a vertical gradient is defined by setting rotation to 90.
Vertical gradients are more common in UI elements because gradients
are often used to give a pseudo 3D lighting effect, where the virtual
light source is somewhere above the scene.

spreadMethod This property defines what happens outside of the defined
gradient area. If the area covered by a gradient does not completely
cover its target object, then it needs to know how to color the remaining
pixels in the object’s area. This property has three possible values,
from the SpreadMethod class: CAP, REPEAT, and REFLECT. CAP causes
the color values at the end of the gradients to extend to the boundaries
of the filled area. REPEAT causes the gradient to repeat itself over and
over to fill the target area. REFLECT is like REPEAT, except each time
it repeats it reverses itself.

There are also properties for positioning the starting point of the gradient
within the filled area (x and y), a property for changing the method of color
interpolation (interpolationMethod), and a property for performing more
complex transformations of the gradient fill (matrix). I’ll just refer you to
the Flex SDK documentation for these less commonly-used properties.

That’s it for the shared properties. Now let’s see how all of this gets put
together in the linear and radial gradient objects, along with some examples
of the visual results.

The LinearGradient class

Linear gradient fills transition through their colors along a straight line. This
type of gradient is useful for backgrounds that are much richer than solid
colors. Linear gradients are also useful for some 3D effects, such as making
UI components look convex or concave, because they are good at mimicking
shadows and highlight drop-off.

The LinearGradient class provides a single property in addition to
those inherited from GradientBase: scaleX. This property is responsible

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 31

for defining the scale factor of the gradient, which is an easy way to define
the area covered by the gradient. By default, the gradient fills the area of the
target object, but this scale factor can be used to define the gradient pattern
over a larger or smaller area. Note that the scale factor is only in the x direc-
tion; no scaling in the y direction exists since the gradient only operates in
one dimension. So if you want the gradient to be half the size of a 100-pixel
wide shape that it fills, you set scaleX = 50.5

Here are some simple examples that show different linear gradient fills
inside Rect objects:

(File: SimpleObjects.mxml)
<s:Rect x="20" y="120" width="80" height="80">

<s:fill>

<s:LinearGradient>

<s:GradientEntry color="black"/>

<s:GradientEntry color="white"/>

<s:GradientEntry color="gray"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

<s:Rect x="120" y="120" width="80" height="80">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0xb0b0b0"/>

<s:GradientEntry color="0x404040"/>

</s:LinearGradient>

5 This use of scaleX seemed non-intuitive to me when I first saw it. I’m used to the
scaleX and scaleY properties, which are on Flash display objects and Flex components,
representing a proportion of an object’s pixel size. So if an object has a width of 100 and
I want it to be 50 pixels wide on the screen, I expect to set a scaleX value of .5. But with
gradient fills, it doesn’t work that way. If a gradient fills an area 100 pixels wide, but I want
it to stop at 50 pixels, I set scaleX to 50. What’s up with that?

It turns out that scaleX for gradient fills means exactly the same thing that it does for
display objects; it is a proportion of that object’s current size. But the key to understanding
scaleX with gradient fills is that a gradient fill has a natural size of one pixel. So by specifying
a scaleX value of 50, we’re actually saying that the gradient should fill 50 times its natural
size, or 50 pixels. One of the confusing things here is that if you don’t specify any value for
scaleX, it fills its object completely. But this is not because the gradient fill has a scale value
of 1 (as do typical objects in Flex and Flash). Instead, the scaleX property has a default value
of NaN, which tells the gradient to fill whatever area it occupies, regardless of size.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 32

</s:fill>

</s:Rect>

<s:Rect x="220" y="120" width="80" height="80">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0x808080"/>

<s:GradientEntry color="0xa0a0a0" ratio=".25"/>

<s:GradientEntry color="0x202020"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

<s:Rect x="320" y="120" width="80" height="80">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0x808080"/>

<s:GradientEntry color="0x202020" ratio=".1"/>

<s:GradientEntry color="0x404040" ratio=".75"/>

<s:GradientEntry color="0xa0a0a0"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

This code results in the following:

(Demo: SimpleObjects)

The first of these rectangles is the result from the same black/white/gray
gradient entries that we saw earlier. This example uses the default rotation,
so the linear gradient proceeds from left to right. The second example shows
a subtle vertical gradient between two shades of gray, caused by using a
rotation value of 90. This gradient is appropriate for some application
window and container backgrounds.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 33

The third and fourth examples show the pseudo-3D effects that linear
gradients are sometimes used for. The third object simulates a convex object
lit from above, where the light shows most at the top of the object. The
rounded effect is achieved by having the gradient proceed from one color to
a lighter color at a ratio of .25, then down to a darker color at the bottom.
The final object shows more of a concave effect, with the light showing most
at the bottom of the object.

To see a slightly more involved example, take a look at the example
LinearGradientProperties. The application uses several GUI controls
to allow the user to change the gradient colors, the rotation, and other
properties of the gradient. The gradient is specified with data bindings to
those input values, such as the gradient’s rotation property being set by
the rotationInput text control, and fills a Rect object as follows:

(File: LinearGradientProperties.mxml)
<s:Rect id="rect" width="180" height="180">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

<s:fill>

<s:LinearGradient

rotation="{Number(rotationInput.text)}"

x="{Number(xInput.text)}"

y="{Number(yInput.text)}"

scaleX="{Number(scaleXInput.text)}"

spreadMethod="{spreadMethodInput.selectedItem}">

<s:GradientEntry

color="{startColor.selectedColor}"/>

<s:GradientEntry

color="{endColor.selectedColor}"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

The stroke on the Rect is defined just to give the shape a visual boundary.
When you run the application, you can play with various properties of the
gradient to see how they affect the visual result, as seen here:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 34

(Demo: LinearGradientProperties)

The RadialGradient class

Radial gradients are useful for some special effects like specular highlights
and spotlights. They help give graphical objects a 3D look by mimicking
circular shadows and highlight drop-off. They are also good for emphasizing
areas of focus through spotlight effects.

Radial gradients in Flex are handled with the RadialGradient class,
which sets up a gradient to start at some center point and radiate outwards
to end at the perimeter of the filled area. This class has three properties,
beyond the shared ones in GradientBase, that help define the way that the
gradient fills the area. The scaleX and scaleY properties act like the scaleX
property in LinearGradient, but since this is a two-dimensional fill, scales
happen in two directions. Like the linear gradient’s scaleX property, these
properties default to a value of NaN, which causes the gradient to fill the
entire area of the object that it is assigned to. So if you don’t need to change
that behavior, you won’t need to set these properties.

The other property of RadialGradient is focalPointRatio, which is
used in conjunction with the rotation property to set the location of the
center point from which the gradient radiates. The gradient radiates outward
toward the boundaries of the gradient area, starting from some point inside.
That point is determined by the rotation parameter, which tells the gradient
the degrees to rotate, and the focalPointRatio, which tells the gradient
where on that rotation axis to place the center. The focalPointRatio is a
value from -1 to 1, with -1 placing the point on the left edge of the gradient
area and 1 placing it on the right edge. A value of 0, the default for this
property, places the value in the middle of the gradient area. Meanwhile, the
rotation property determines the angle of the center line, with the default

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 35

value of 0 being no rotation, so the center line simply extends from left to
right through the middle of the gradient area. For example, a rotation of
45 and a focalPointRatio of .5 will place the center of the gradient at the
lower right corner of the gradient area.

You can play with the relationship of rotation and focalPointRatio
in the RadialGradientProperties demo. Besides showing how these
properties affect the look of the gradient, the application has optional guides
to display the current rotation (the line through the middle of the circle)
and focalPointRatio (the small circle on top of the line). For example,
this screen shot shows a gradient with a rotation of 45 degrees and a
focalPointRatio of .5:

(Demo: RadialGradientProperties)

You can see some simple examples of radial gradients in the following
code from SimpleObjects:

(File: SimpleObjects.mxml)
<s:Ellipse x="120" y="220" width="80" height="80">

<s:fill>

<s:RadialGradient>

<s:GradientEntry color="black"/>

<s:GradientEntry color="white"/>

<s:GradientEntry color="gray"/>

</s:RadialGradient>

</s:fill>

</s:Ellipse>

<s:Ellipse x="220" y="220" width="80" height="80">

<s:fill>

<s:RadialGradient>

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 36

<s:GradientEntry color="0xf0f0f0"/>

<s:GradientEntry color="0x404040"/>

</s:RadialGradient>

</s:fill>

</s:Ellipse>

<s:Ellipse x="320" y="220" width="80" height="80">

<s:fill>

<s:RadialGradient rotation="-45"

focalPointRatio=".5">

<s:GradientEntry color="0xf0f0f0"/>

<s:GradientEntry color="0x404040"/>

</s:RadialGradient>

</s:fill>

</s:Ellipse>

This code results in the following:

(Demo: SimpleObjects)

The first circle uses the gradient entries used in previous examples, where
the gradient starts at black, in the center of the circle, transitions through
white halfway through, and ends at gray at the perimeter of the circle. It’s
not a very effective use of this gradient; I just used it for comparison purposes
to the earlier examples. The other two circles are more representative of the
power of radial gradients.

The second circle transitions from a light gray color in the center to a
darker gray at the edge. This simple, two-color gradient effect really pops the
circle out of the page, giving it a 3D look that belies its simple composition.
The reason that it works so well is that that lighter color in the middle acts
just like a specular highlight. A specular highlight is the reflection of a
light source on an object. On a 3D object with a matte surface, the specular
highlight of most light sources, like the sun, show up as bright spots that

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 37

gradually fade toward their edges to the normal object color. The radial
gradient mimics a specular highlight because it is lighter in the center and
falls off smoothly toward a darker color at the edges.

The third example takes the circle a step closer toward mimicking reality.
The second example works, but only if you don’t actually think about the
light source. If you stop and think about it, it doesn’t make much sense; the
light seems to be coming from the viewer. Unless the viewer is wearing a
miner’s helmet with a light shining directly out from their forehead,6 it’s not
very realistic.

A typical light source is usually one that shines from above, like the
sun or the lights in a room. And a typical light source also isn’t usually
so symmetrically located on the vertical plane between the viewer and the
object being lit. The third circle addresses these problems by offsetting the
gradient center, and therefore the virtual light source, to the upper-right of
the object. It’s a subtle change from the second example, but I like it because
it gives a more real-world feel to the object.

Radial gradients that are offset from dead center of
the object look more natural; the real world rarely
lights objects from the direction of the viewer.

Setting strokes and fills in Shapely

Now that we’ve talked about stroking and filling objects, we’re finally able
to discuss how the Shapely application sets the drawing state that is used
when creating graphics shapes.

The components at the bottom of Shapely’s control panel determine the
stroke and fill attributes that are used when drawing. The checkbox at the
top controls whether a stroke is used and the checkbox at the bottom controls
whether a fill is used. In between these components are ColorPickers for
the stroke and the fill gradient. And a sample rectangle between the stroke
and fill sections shows the user a preview of what shapes look like with the
current stroke and fill settings:

6This is probably not a demographic that is worth targeting in general, although such
users could be interesting for data-mining applications.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 38

(Demo: Shapely)

These objects are created by the following code:

(File: components/ControlPanel.mxml)
<s:CheckBox fontSize="9" label="Stroke" id="strokeCB"

selected="true" change="setDrawingState()"/>

<mx:ColorPicker id="strokeColor" change="setDrawingState()"

width="100%" selectedColor="0xff0000"/>

<s:Rect id="sampleRect" x="10" width="100%" height="20"/>

<s:HGroup enabled="{fillCB.selected}">

<mx:ColorPicker id="fillColor"

change="setDrawingState()"

selectedColor="0xffffff"/>

<mx:ColorPicker id="fillGradientColor"

change="setDrawingState()"

selectedColor="0x0"/>

</s:HGroup>

<s:CheckBox id="fillCB" label="Fill" fontSize="9"

change="setDrawingState()"/>

When any of these stroke and fill settings change, the setDrawingState()
event handler function is called:

private function setDrawingState():void

{

var newStroke:IStroke;

var newFill:IFill;

if (fillCB.selected)

{

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 39

if (fillColor.selectedColor ==

fillGradientColor.selectedColor)

newFill = new SolidColor(

fillColor.selectedColor);

else

{

newFill = new LinearGradient();

LinearGradient(newFill).entries = [

new GradientEntry(

fillColor.selectedColor),

new GradientEntry(

fillGradientColor.selectedColor)

];

}

}

if (strokeCB.selected)

newStroke = new SolidColorStroke(

strokeColor.selectedColor);

sampleRect.stroke = newStroke;

sampleRect.fill = newFill;

var drawingChangeEvent:DrawingStateChangeEvent =

new DrawingStateChangeEvent("drawingStateChange",

newStroke, newFill);

dispatchEvent(drawingChangeEvent);

}

The setDrawingState() function sets up the new stroke and fill objects
to be used by both the sampleRect visible in the control panel and future
shapes that are drawn to the canvas. If the stroke checkbox strokeCB is
not selected, the newStroke object will be null and both sampleRect and
future shapes will not be drawn with a stroke. The same thing is true for fills
and the newFill object, based on whether fillCB is selected.

If a stroke is selected, it is set to a simple SolidColorStroke based on
the color selected in the strokeColor ColorPicker control. Fills are a bit
more complicated. To simplify the UI and the explanation of how Shapely
works, the fill color is always specified in terms of a gradient, with a separate
ColorPicker for each color. If both gradient colors are the same, then a
SolidColor fill is created with that color. Otherwise, a LinearGradient

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 40

fill is created. Note that this gradient is always left-to-right; no option exists
to change the gradient direction. Also, the user cannot choose more than
two entries in the gradient and the gradient is always a LinearGradient,
never a RadialGradient. These were conscious decisions made to limit the
complexity of the UI and the code. Changing any or all of these options is
hereby left as an exercise for the reader.7 It shouldn’t be difficult to add these
features using what we learned in this chapter.

Once we’ve set values for the newStroke and newFill objects, we cre-
ate a DrawingStateChangeEvent, which is a simple Event subclass that
contains the new fill and stroke objects to be sent to the event’s listeners.
We dispatch this event, which is received by the drawingStateChange()
function in Shapely:

(File: Shapely.mxml)
private function drawingStateChange(

event:DrawingStateChangeEvent):void

{

canvas.stroke = event.stroke;

canvas.fill = event.fill;

}

Image is everything

One graphic area that we haven’t covered yet, but which is no less important
than the vector-based shapes we discussed earlier, is images. Images can be
useful in many different places in rich client applications, from the icons in
buttons to photographs in media applications. Images can also be useful in
ways that aren’t obvious, such as capturing GUI objects as bitmap images
and manipulating those objects in visually interesting ways (a technique that
we will see applied later when we discuss Pixel Bender shader-based anima-
tion effects in Chapter 10).

7I’ve always wanted to say “left as an exercise for the reader.” Too many years of math
classes with infuriatingly non-obvious proofs in the textbooks marked with that catch phrase
engendered a sense of vengeance which is only overcome through propagating the same
phrase through my books. But hopefully my use is a bit less devious; I do think that the
details here are obvious and doable. It’s just that they just require more work and code than
is worth delving into in the pages of this book, especially for the goal we’re trying to achieve
here, which is knowledge of how the graphics classes work.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 41

Here’s a simple application that displays an image, along with controls
that let the user change the way the image is rendered:

(Demo: BitmapImageTest)

The image control in the application is a BitmapImage object, with its
properties determined by the values in the UI controls:

(File: BitmapImageTest.mxml)
<s:BitmapImage source="@Embed(source='images/Bridge.jpg')"

smooth="{smoothInput.selected}"

fillMode="{fillModeInput.selectedItem}"

width="{Number(widthInput.text)}"

height="{Number(heightInput.text)}"/>

The Image and BitmapImage controls display images in a GUI. We focus
on BitmapImage in this chapter, but you may also want to look at the Image
class for your applications. An important limitation exists for BitmapImage;
it can only handle embedded assets (where the bitmap supplied to the object
is loaded at compile time and stored as an asset with the application). If you
want to dynamically load image assets (such as from a network location),
then you’ll want to look into using Image instead. Most of the demos in this
book use embedded assets, so the simpler BitmapImage class does the trick.

A BitmapImage object displays a specified bitmap in a given position (x
and y) and size (width and height). BitmapImage also has the same three
properties source, smooth, and fillMode that are on BitmapFill, so you
might want to refer to the section on BitmapFill earlier in this chapter for
information on these properties.

We can see the results of the different fill modes in the demo applica-
tion, BitmapImageTest. When the user selects different width and height
values, the size of the BitmapImage object changes to the new dimensions.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 42

To make it more obvious what’s going on in the window, a bounding rectan-
gle is drawn at the selected size. Setting the left, top, right, and bottom
values all to 0 pins the rectangle to the boundaries of its containing group,
which is sized according to the dimensions of the BitmapImage object, so
the rectangle assumes that same size:

<s:Rect left="0" top="0" right="0" bottom="0">

<s:stroke>

<s:SolidColorStroke color="black"/>

</s:stroke>

</s:Rect>

When the size is doubled, the image scales to fill the new size:

When the fillMode is changed to clip, the bitmap stays at its original
size, even though the space it occupies (which we can see from the border
rectangle) is much larger:

When repeat is chosen as the fillMode, the bitmap is repeated across
the size of the BitmapImage space:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 43

You can also play around with the Smooth checkbox to see the pixeliza-
tion artifacts that result from not smoothing during scaling operations. The
impact of these artifacts varies based on the original image, the size of that
image, and the scaling factor.

Reflections, like gradient fills, are one way to make
a 2D interface more rich and 3D-like, by giving the
user the impression that the objects interact like
they would in the real world.

As one final view of how you might use bitmaps and graphics in different
ways in an application (and as a subtle teaser for techniques that we will
elaborate on in the next chapter), let’s see how to create a simple reflection
effect. First, we need a rich background for our application which we’ll get
with a gradient fill:

(File: Reflexion.mxml)
<s:Rect width="100%" height="100%">

<s:fill>

<s:LinearGradient rotation="90">

<s:GradientEntry color="0x404040"/>

<s:GradientEntry color="0xf0f0f0"/>

</s:LinearGradient>

</s:fill>

</s:Rect>

Next, we want to display an image with a reflection of itself. This is done
with a VGroup, which automatically stacks the two objects (the image and its
reflection) vertically. The reflection is exactly the same image, but reflected
vertically, so it is scaled it in the y direction:

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 44

<s:VGroup id="reflectionContainer" x="50" y="50" gap="0">

<s:BitmapImage id="image" source="{Harbor}"

x="50" y="50" width="400" height="200"/>

<s:BitmapImage source="{Harbor}" scaleY="-1" alpha=".4"

width="{image.width}" height="{image.height}"/>

</s:VGroup>

You should note a couple of things about this code. First, the gap in the
VGroup is set to 0 because the reflection should start exactly where the image
stops (unless we are trying to mimic the object floating above the reflected
surface). Second, the way that the reflection is achieved is by scaling the
image by -1 in y. This scaling operation effectively inverts the image verti-
cally, which is exactly what we want. Third, a fractional alpha value is set
on the reflection to make it translucent. This is necessary because true re-
flections are never perfect, unless the reflecting surface is a mirror. We want
to mimic an imperfect reflecting surface, so we dim the reflected image by
giving its alpha property a translucent value. The effect is easy to achieve,
and provides a reasonable, if simple, approximation of a reflected image:

(Demo: Reflexion)

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285


Chapter 2 · Graphics 45

Reflections in the real world are never perfect; the
more we can mimic real-world reflection effects,
the more natural they will seem to the user.

We can improve on this effect, however. The translucent reflection in
this effect, while better than a fully opaque version, just isn’t real enough.
There are other things that we can do to make the reflection much more
realistic. But these techniques require knowledge of Flex filters, which is
both an interesting topic and excellent segue to the next chapter.

Conclusion

In this chapter, we saw how Flex 4 allows you to create shapes with different
stroke and fill properties to create custom graphics for you application, in
either MXML or ActionScript code. You can use these drawing primitives to
create anything from drawing applications to image viewers. These graphics
shapes and attributes are also useful for creating custom component skins, as
we will see in Chapter 6.

In the next chapter, we will see how to use Flex filters to add rich graph-
ical effects to your applications.

Buy the Book · Discuss

http://www.artima.com/shop/flex_4_fun
http://www.artima.com/forums/forum.jsp?forum=285

	Graphics
	Flex 4 graphics
	Shapely: a simple drawing tool
	Graphics primitives: getting into shape
	Strokes of genius: lines and outlines
	Fills: it's what's on the inside that counts
	Setting strokes and fills in Shapely
	Image is everything


