
Scala Puzzlers
Excerpt

artima
ARTIMA PRESS

WALNUT CREEK, CALIFORNIA

Buy the Book · Discuss

http://www.artima.com/shop/scala_puzzlers
http://www.artima.com/forums/forum.jsp?forum=291


Excerpt from Scala Puzzlers

Puzzler 2

UPSTAIRS downstairs

Scala offers several convenient ways to initialize multiple variables. Some-
times, this can lead to unexpected surprises.

What is the result of executing the following code in the REPL?

var MONTH = 12; var DAY = 24

var (HOUR, MINUTE, SECOND) = (12, 0, 0)

Possibilities

1. Prints:

MONTH: Int = 12

DAY: Int = 24

HOUR: Int = 12

MINUTE: Int = 0

SECOND: Int = 0

2. Both statements fail to compile.

3. The first statement prints:

MONTH: Int = 12

DAY: Int = 24

and the second throws a runtime exception.

Buy the Book · Discuss

http://www.artima.com/shop/scala_puzzlers
http://www.artima.com/forums/forum.jsp?forum=291


Puzzler 2 · UPSTAIRS downstairs 3

4. The first statement prints:

MONTH: Int = 12

DAY: Int = 24

and the second fails to compile.

Explanation

You might recall something about uppercase variables and constant values
and wonder whether either line compiles. As it happens, the first line com-
piles fine; it’s the second statement that fails to compile. The correct answer
is number 4:

scala> var MONTH = 12; var DAY = 24

MONTH: Int = 12

DAY: Int = 24

scala> var (HOUR, MINUTE, SECOND) = (12, 0, 0)

<console>:11: error: not found: value HOUR

var (HOUR, MINUTE, SECOND) = (12, 0, 0)

ˆ

<console>:11: error: not found: value MINUTE

var (HOUR, MINUTE, SECOND) = (12, 0, 0)

ˆ

<console>:11: error: not found: value SECOND

var (HOUR, MINUTE, SECOND) = (12, 0, 0)

Scala will happily allow you to use an uppercase variable name for plain,
single-value assignments of vals and vars, as in the case of MONTH and DAY.
However, as the second statement demonstrates, uppercase variable names
are tricky in multiple-variable assignments.

This trickiness arises because multiple-variable assignments are based
on pattern matching, and within a pattern match, variables starting with an
uppercase letter take on a special meaning: they are stable identifiers.

Stable identifiers are intended for matching against constants:

Buy the Book · Discuss

http://www.artima.com/shop/scala_puzzlers
http://www.artima.com/forums/forum.jsp?forum=291


Puzzler 2 · UPSTAIRS downstairs 4

scala> final val TheAnswer = 42

scala> def checkGuess(guess: Int) = guess match {

case TheAnswer => "Your guess is correct"

case _ => "Try again"

}

scala> checkGuess(21)

res8: String = Try again

scala> checkGuess(42)

res9: String = Your guess is correct

Lowercase variables, by contrast, define variable patterns, which cause val-
ues to be assigned:

scala> var (hour, minute, second) = (12, 0, 0)

hour: Int = 12

minute: Int = 0

second: Int = 0

In the case of our code example, you are not carrying out a variable assign-
ment as intended, therefore, but a match against constant values.

Discussion

If you are trying to use uppercase variable names that, by extreme coinci-
dence, happen to match values that are in scope (which could happen with
common names in a large program), the pattern match will compile success-
fully, and either succeed or fail depending on whether the values match:

val HOUR = 12; val MINUTE, SECOND = 0;

scala> var (HOUR, MINUTE, SECOND) = (12, 0, 0)

val HOUR = 13; val MINUTE, SECOND = 0;

scala> var (HOUR, MINUTE, SECOND) = (12, 0, 0)

scala.MatchError: (12,0,0) (of class scala.Tuple3)

...

Note that, even in the first case where the match is successful, no variables
are actually assigned: stable identifiers are never assigned a value during a

Buy the Book · Discuss

http://www.artima.com/shop/scala_puzzlers
http://www.artima.com/forums/forum.jsp?forum=291


Puzzler 2 · UPSTAIRS downstairs 5

pattern match, by definition. In short, at best nothing happens, otherwise you
get an exception at runtime—neither of which was intended.

Lowercase variables can also be treated as stable identifiers by enclosing
them in backticks. In that case, they must be vals, since we are treating them
as constants.

final val theAnswer = 42

def checkGuess(guess: Int) = guess match {

case `theAnswer` => "Your guess is correct"

case _ => "Try again"

}

scala> checkGuess(42)

res0: String = Your guess is correct

var theAnswer: Int = 42 // not a val, and not final either

scala> def checkGuess(guess: Int) = guess match {

case `theAnswer` => "Your guess is correct"

case _ => "Try again"

}

<console>:9: error: stable identifier required, but

theAnswer found.

case `theAnswer` => "Your guess is correct"

It’s unlikely to come as a surprise that uppercase names for vars are not con-
sidered Scala best practice: use lowercase names for vars (better still, avoid
them completely!), and uppercase names for constants. As described in The
Scala Language Specification, constants should also be declared final.1

This prevents subclasses from overriding them, and has an additional per-
formance benefit in that the compiler can inline them.

Use uppercase variable names only for
constants.

1Odersky, The Scala Language Specification, Section 4.1. [Ode08]

Buy the Book · Discuss

http://www.artima.com/shop/scala_puzzlers
http://www.artima.com/forums/forum.jsp?forum=291

